人教版六年级数学上册第四单元《比》教案(五)(5)
网络来源
2020-07-28 16:56:52
备课资料参考
典型例题准备
【例题】甲、乙两个仓库有很多货物,先从甲仓库运走80 t货物,甲仓库的剩余货物与乙仓库货物的质量比为3∶2;再从乙仓库运走55t货物,乙仓库剩余货物的质量是甲仓库剩余货物的质量的1/4。甲、乙两个仓库原来共有货物多少吨?
分析:不变量:从甲仓库运走80吨货物,甲仓库剩余货物的质量不变。
前后变化的分率:
(1)原来乙仓库货物的质量是甲仓库剩余货物质量的2/3;
(2)从乙仓库运走55 t后,乙仓库剩余货物的质量是甲仓库剩余货物质量的1/4。
对应量:甲、乙两个仓库货物质量变化的分率差的对应量是55 t。
解答:甲仓库剩余的货物:55÷2/3-1/4=132(t)
甲、乙原来共有货物:132+80+132×2/3=300(t)
答:甲、乙两个仓库原来共有货物300 t。
解法归纳:解决此类比与分率前后变化的问题,关键是抓住不变量,找出已知量对应的分率,从而用除法解决问题。
相关知识阅读
公侯伯子男,五四三二一。
假有金五秤*,依率要分讫。
【注释】*:1秤=15斤,5秤=75斤。
有公、侯、伯、子、男五等官员,想要根据官位高低来分75斤金子,按5∶4∶3∶2∶1的比分完。可以通过按比分配问题的知识求出每种官位分得金子的质量。
点击查看更多:六年级数学上册教案
奥数网提醒:
扫码关注回复“教案”
获得上下册教案资料!