苏教版六年级上册数学《表面涂色的正方体 》教案(一)(2)
(3)得出结论:
(课件出示)3面涂色的小正方体在顶点,有8个;2面涂色的小正方体在棱中间,每条棱上有2个,12条棱共24个,为了更清楚地表示24是怎么来的,我们可以写成(板书:12×2=24);1面涂色的小正方体在面中间,每个面有4个,6个面共24个(板书:6×4=24)
(四)每条棱都平均分成5份的正方体表面涂色情况。
师:刚才我们研究了棱平均分成3份、4份时小正方体表面涂色的情况,那把棱平均分成5份呢,小正方体表面涂色的情况又会怎样呢。请大家独立思考,再填一填实验单。
汇报演示:找好了吗?达成共识。(很快)
得出结论并板书。
4、过渡:刚才我们研究了棱平均分成3份、4份、5份时,分成的小正方体表面涂色情况,一起来看一下(出示课件和板书),你有什么新的发现?(小组讨论一下)
三、观察比较、归纳规律。
1、观察课件和板书,学生小组讨论:你有什么新的发现?(分2个层次)
引导学生对比三次探究的过程,小组讨论后得出规律:
第1层次:不管把大正方体的棱平均分成几份,三面涂色的小正方体都在顶点,都有8个;两面涂色的小正方体都在棱中间;1面涂色的小正方体都在面中间。(板书:顶点、棱中间、面中间)
第2层次:怎样确定一条棱上有几个小正方体2面涂色;怎样确定一个面上有几个小正方体1面涂色。(说清楚归纳和发现规律的思考过程)
2、师:如果把棱平均分成6份、7份、9份、10份你能知道每种小正方体的位置和个数了吗?还需要一个一个来研究吗?有什么好办法让人一下子看出其中的规律呢?如果用n表示把大正方体的棱平均分的份数,用a、b分别表示2面涂色和1面涂色的小正方体的个数,你能用式子分别表示n和a、b的关系吗?
a= 12(n-2) b=6(n-2)?
3、(修改完板书成:把6×9、6×4、6×1改写成平方的形式。
12×1=12,6×1=6)
4、引导学生自主提出新问题:除了知道三面、两面、一面涂色的小正方体的个数以外,你还想知道什么?(估计学生会提出:没有涂色的小正方体有多少个?)
(1) 先猜一猜
(2) 课件演示将三面、两面、一面涂色的小正方体剥离出去的过程,激发学生寻求更简便的方法。
展示汇报,从而总结出没有涂色的小正方体的个数是(n-2)3个
四、回顾过程,反思得失。
回顾探索和发现规律的过程,说说你有什么体会。
1、找各种小正方体时,要注意它们在大正方体上的位置。
(各种小正方体的个数与正方体顶点、面和棱有关。)
2、把找、数、算等方法结合起来,根据图形的特征进行思考。
3、经历了怎样的过程发现这些规律的?(观察猜想-实验验证-得出结论-回顾反思)
五、练习拓展、应用规律。(见课件)
课外延伸:刚才我们用这样的实验过程研究了表面涂色的正方体,你觉得还可以用这样的方法研究什么问题?(表面涂色的长方体)又该怎样去研究呢?有兴趣的同学可以课后尝试一下。
奥数网提醒:
小学数学试题、知识点、学习方法
尽在“奥数网”微信公众号