人教版六年级数学上册第六单元集体备课教案(4)
2 将例3中的问题改为“原计划比实际少百分之几”?该如何解答呢?
(1)提问:这道题中是那两个量进行比较?把哪个量看成单位1,先求什么?再求什么?
(2)学生列式,老师板书。
(14-12)÷14
(3)比较观察
将例3改变问题后的列式发生了怎样的变化?为什么除数发生了变化?三、拓展应用
(1).分析数量关系。
(1)求今年产量是去年产量的百分之几,是把( )看作单位“1”,是( )和( )比,所以用( )÷( ).
( 2)求今年小麦的产量比去年增产百分之几,是把( )看作单位“1”,是( )和( )比,所以用( )÷( )。
(3)求女生人数比男生人数少百分之几,是把( )看作单位“1”,是( )和( )比,所以用( )÷( )。
(2).操场上有男生25人,女生20人。女生人数比男生人数少百分之几?
(3).一辆自行车原价是312元,现价比原价降低了168元。降低了百分之几?
(4).甲校学生人数比 乙校多5%,乙校学生人数比甲校少百分之几?
四、课堂小结。
这节课我们学习了一类怎样的百分数应用题?解答这类百分数应用题的关键是什么?
作业设计 做一做
板书设计 “求一个数比另一个数多(或少)百分之几”的应用题
例3、14÷12≈1.167=116.7%
116.4%-100%=16.7%
答:(略)
心得反思
第4课时
教学课题 “求比一个数多百分之几的数是多少”的应用题
主备教师 使用教师 授课时间 2014年 月 日
教
学
目
标 知识
与
技能 掌握稍复杂的求比一个数多百分之几的数是多少的问题的解决方法;
能进一步理解百分数应用题与相对应的分数应用题之间的联系。
过程
与
方法 增强应用意识, 百分数在实践生活中的应用。
情感
态度
与价
值观 提高学生类推、分析、解决问题的能力。
教学重点 找准单位“1”,掌握求比一个数多百分之几的数是多少的问题的解决方法。
教学难点 找准单位“1”,掌握求比一个数多百分之几的数是多少的问题的解决方法。
教学准备及手段 多媒体课件
教 学 流 程
二次备课
一、 回顾旧知,复习铺垫
(1)、口算 3/4×4 2/3÷2/3 1+12%
(2)、20的3/5是多少? 30的70%是多少?
二、 师生互动,探究新知
(一)、自主提问,生成问题。
1、教师口述信息:学校图书室原有图书1400册,今年图书册数增加了12%。
2、抽生复述刚才听到的信息。
3、学生提出相关百分数问题,引入例题。
预设问题:①增加了多少册? ②今年有多少册图书? ③今年的图书册数是原来的百分之几?
(二)、解决问题,引出例题。
1、出示例4:
师述:用刚才的信息加上同学们提出的第二个问题,就是我们今天要学习的例4。
例4:学校图书室原有图书1400册,今年图书册数增加了12%。现在有多少册图书?
2、分析数量关系,确定解决问题的方法。
(1)、重点 分析“今年图书册数增加了12%”。
引导:思考“今年图书册数增加了12%”是什么意思?在那见过类似的问题?如果把12%换成一个分数你会解决吗?(我们可以借助解决分数应用题的方法来解决百分数应用题。)等量关系是什么?(今年图书册数=原来图书册数+增加的册数)单位“1”是那个量?我们先求什么?(即问题①)求增加了多少册就是求什么?怎么列式?(1400×12%)(教师 一个数乘百分数的计算方法。)
(2)、根据等量关系式列式解答,强调过程的完整性。(抽生板演)
(3)、抽生说说算式的意义,回顾解题思路,说说解题的关键点是什么?(找单位“1”和等量关系。)
(三)、一题多解,拓展思维。
思考:解决这类问题还有什么方法?
(1)提示:借助刚才提出的问题③思考。(2)学生独立思考列式。1400×(1+12%)。(3)抽生说思路。(4)借助线段图分析“今年的图书册数是原来的百分之几?”(5)找准解决问题关键点。(6)列式解答。
(四)、分析特征,自主归类。
1、师生一起归类,这类题属于“求比一个数多(少)百分之几的数是多少”的问题。
2、回顾这类题的解题思路与方法。
三、联系实际,对比提升。
1、改编例4并解答。
学校图书室现在有图书1568册,今年图书册数增加了12%。今年图书有多少册?
(1)学生自主思考解答。(2)小组合作解答。(3)全班交流。
2、分析这道题与例题有什么相同点和不同点。
3、比较今天学的这类题与分数应用题有什么相同点和不同点。
课件出示例5
学生试做,师板书:
1×(1-20%)×(1+20%)=0.96
(1-0.96)÷1=0.04=4%
四、拓展应用
比30米多60%是( )米。 40千克比( )少20%。
五、全课 。
这节课你收获了什么?
作业设计 课后做一做
板书设计 “求比一个数多百分之几的数是多少”的应用题
例4 1400×(1+12%)
=1400×112%
=1568(册)
答:(略)
例5 1×(1-20%)×(1+20%)=0.96
(1-0.96)÷1=0.04=4%
答:(略)
心得反思