Image Modal

全国站
奥数网

全国站
奥数网

六年级奥数课堂:整数问题之一(8)

无锡奥数网整理 2011-10-20 17:57:57

  例24 一个数除以3余2,除以5余3,除以7余2,求符合条件的最小数.

  解:先列出除以3余2的数:

  2, 5, 8, 11, 14, 17, 20, 23, 26,…,

  再列出除以5余3的数:

  3, 8, 13, 18, 23, 28,….

  这两列数中,首先出现的公共数是8.3与5的最小公倍数是15.两个条件合并成一个就是

  8+15×整数,

  列出这一串数是

  8, 23, 38,…,

  再列出除以7余2的数

  2, 9, 16, 23, 30,…,

  就得出符合题目条件的最小数是23.

  事实上,我们已把题目中三个条件合并成一个:被105除余23.

  最后再看一个例子.

  例25 在100至200之间,有三个连续的自然数,其中最小的能被3整除,中间的能被5整除,最大的能被7整除,写出这样的三个连续自然数.

  解:先找出两个连续自然数,第一个能被3整除,第二个能被5整除(又是被3除余1).例如,找出9和10,下一个连续的自然数是11.

  3和5的最小公倍数是15,考虑11加15的整数倍,使加得的数能被7整除.11+15×3=56能被7整除,那么54,55,56这三个连续自然数,依次分别能被3,5,7整除.

  为了满足“在100至200之间”将54,55,56分别加上3,5,7的最小公倍数105.所求三数是

159, 160, 161.

  注意,本题实际上是:求一个数(100~200之间),它被3整除,被5除余4,被7除余5.请考虑,本题解法与例24解法有哪些相同之处?

首页 上一页 下一页 尾页

相关推荐

点击查看更多
首页 导航