全国站
奥数网

全国站
奥数网

数论问题奇偶问题:练习题两套含答案

本站原创 2011-06-14 17:31:52

奇偶问题练习题一

  1.小华买了一本共有96张练习纸的练习本,并依次将它的各面编号(即由第1面一直编到第192面)。小丽从该练习本中撕下其中25张纸,并将写在它们上面的50个编号相加。试问,小丽所加得的和数能否为2000?

  【分析】不可能。因为25个奇数相加的和是奇数,25个偶数相加是偶数,奇数加偶数=奇数

  2.有98个孩子,每人胸前有一个号码,号码从1到98各不相同。试问:能否将这些孩子排成若干排,使每排中都有一个孩子的号码数等于同排中其余孩子号码数的和?并说明理由。

  【分析】不可以。一名为98个数中有49个奇数,奇数加偶数等于奇数,奇数不是二的倍数。

  3.有20个1升的容器,分别盛有1,2,3,…,20立方厘米水。允许由容器A向容器B倒进与B容器内相同的水(在A中的水不少于B中水的条件下)。问:在若干次倒水以后能否使其中11个容器中各有11立方厘米的水?

  【分析】不可能,因为两个奇数相加等于偶数,两个偶数相加等于偶数,11是奇数,B是偶数,偶数不等于奇数。

  4.一个俱乐部里的成员只有两种人:一种是老实人,永远说真话;一种是骗子,永远说假话。某天俱乐部的全体成员围坐成一圈,每个老实人两旁都是骗子,每个骗子两旁都是老实人。外来一位记者问俱乐部的成员张三:“俱乐部里共有多少成员?”张三答:“共有45人。”另一个成员李四说:“张三是老实人。”请判断李四是老实人还是骗子?

  【分析】李四是骗子,老实人和说谎的人的人数相等,可是45是个奇数,所以张三是骗子。

  5.围棋盘上有19×19个交叉点,现在放满了黑子与白子,且黑子与白子相间地放,并使黑子(或白子)的上、下、左、右的交叉点上放着白子(或黑子)。问:能否把黑子全移到原来的白子的位置上,而白子也全移到原来黑子的位置上?

  【分析】不可以,因为不是白字多黑字一个,就是黑子多白字一个,不可能相等。

  6.某市五年级99名同学参加数学竞赛,竞赛题共30道,评分标准是基础分15分,答对一道加5分,不答记1分,答错一道倒扣1分。问:所有参赛同学得分总和是奇数还是偶数?

  【分析】奇数,5*30+15=165   165-6N-4M=奇数减去偶数=奇数    99*奇数=奇数。

  7.现有足够多的苹果、梨、桔子三种水果,最少要分成多少堆(每堆都有苹果、梨和桔子三种水果),才能保证找得到这样的两堆,把这两堆合并后这三种水果的个数都是偶数。

  分析与解:当每堆都含有三种水果时,三种水果的奇偶情况如下表:

  

  可见,三种水果的奇偶情况共有8种可能,所以必须最少分成9堆,才能保证有两堆的三种水果的奇偶性完全相同,把这两堆合并后这三种水果的个数都是偶数。

  说明:这里把分堆后三种水果的奇偶情况一一列举出来,使问题一目了然。

  8.有30枚2分硬币和8枚5分硬币,5角以内共有49种不同的币值,哪几种币值不能由上面38枚硬币组成?

  解:当币值为偶数时,可以用若干枚2分硬币组成;

  当币值为奇数时,除1分和3分这两种币值外,其余的都可以用1枚5分和若干枚2分硬币组成,所以5角以下的不同币值,只有1分和3分这两种币值不能由题目给出的硬币组成。

  说明:将全体整数分为奇数与偶数两类,分而治之,逐一讨论,是解决整数问题的常用方法。

  若偶数用2k表示,奇数用2k+1表示,则上述讨论可用数学式子更为直观地表示如下:

  当币值为偶数时,2k说明可用若干枚2分硬币表示;

  当币值为奇数时,

  2k+1=2(k-2)+5,

  其中k≥2。当k=0,1时,2k+1=1,3。1分和3分硬币不能由2分和5分硬币组成,而其他币值均可由2分和5分硬币组成。

  9.设标有A,B,C,D,E,F,G的7盏灯顺次排成一行,每盏灯安装一个开关。现在A,C,D,G这4盏灯亮着,其余3盏灯没亮。小华从灯A开始顺次拉动开关,即从A到G,再从A开始顺次拉动开关,他这样拉动了999次开关后,哪些灯亮着,哪些灯没亮?

  解:一盏灯的开关被拉动奇数次后,将改变原来的状态,即亮的变成熄的,熄的变成亮的;而一盏灯的开关被拉动偶数次后,不改变原来的状态。由于

  999=7×142+5,

  因此,灯A,B,C,D,E各被拉动143次开关,灯F,G各被拉动142次开关。所以,当小华拉动999次后B,E,G亮,而A,C,D,F熄。

  10.桌上放有77枚正面朝下的硬币,第1次翻动77枚,第2次翻动其中的76枚,第3次翻动其中的75枚……第77次翻动其中的1枚。按这样的方法翻动硬币,能否使桌上所有的77枚硬币都正面朝上?说明你的理由。

  分析:对每一枚硬币来说,只要翻动奇数次,就可使原先朝下的一面朝上。这一事实,对我们解决这个问题起着关键性作用。

  解:按规定的翻动,共翻动1+2+…+77=77×39次,平均每枚硬币翻动了39次,这是奇数。因此,对每一枚硬币来说,都可以使原先朝下的一面翻朝上。注意到

  77×39=77+(76+1)+(75+2)+…+(39+38),

  根据规定,可以设计如下的翻动方法:

  第1次翻动77枚,可以将每枚硬币都翻动一次;第2次与第77次共翻动77枚,又可将每枚硬币都翻动一次;同理,第3次与第76次,第4次与第75次……第39次与第40次都可将每枚硬币各翻动一次。这样每枚硬币都翻动了39次,都由正面朝下变为正面朝上。

  说明:(1)此题也可从简单情形入手(如9枚硬币的情形),按规定的翻法翻动硬币,从中获得启发。

  (2)对有关正、反,开、关等实际问题通常可化为用奇偶数关系讨论。

  11.在8×8的棋盘的左下角放有9枚棋子,组成一个3×3的正方形(如左下图)。规定每枚棋子可以跳过它身边的另一枚棋子到一个空着的方格,即可以以它旁边的棋子为中心作对称运动,可以横跳、竖跳或沿着斜线跳(如右下图的1号棋子可以跳到2,3,4号位置)。问:这些棋子能否跳到棋盘的右上角(另一个3×3的正方形)?

  解:自左下角起,每一个方格可以用一组数(行标、列标)来表示,(自下而上)第i行、(自左而右)第j列的方格记为(i,j)。问题的关键是考虑9枚棋子(所在方格)的列标的和S。

  一方面,每跳一次,S增加0或偶数,因而S的奇偶性不变。另一方面,右上角9个方格的列标的和比左下角9个方格的列标之和大

  3×(6+7+8)-3×(1+2+3)=45,

  这是一个奇数。

  综合以上两方面可知9枚棋子不能跳至右上角的那个3×3的正方形里。

 第二页:奇偶问题练习题二

 

首页 上一页 下一页 尾页

相关推荐

点击查看更多
首页 导航