全国站
奥数网

全国站
奥数网

五年级数论问题:余数问题试题及详解2

奥数网原创 2010-12-07 11:55:24

  学而思“奥数专题”栏目每日精选试题各一道,细分不同年级和难度。

  ·本周试题由学而思智康奥数名师
郑和森精选、解析,以保证试题质量。

  ·每周末,我们将一周试题汇总为word版本试卷,您可下载打印或在线阅读。

  ·每道题的答题时间不应超过15分钟。

 

  五年级数论问题:余数问题

  难度:中难度


  

   

名师介绍:

  郑和森老师能够显著提高孩子对于奥数的兴趣,孩子的解题能力和奥数成绩都能有明显的提高.所教的学生在迎春杯,希望杯等全国及北京等各种比赛中都获过奖。所教的学生中,每年都有考入人大附中,十一,四中,实验等等的北京市重点中学。

教学特色:

  为人幽默风趣,亲切活泼的授课风格深受广大学生喜爱,不仅能成为学生的好老师,更能很快成为学生的好伙伴,成为学生求学路中思想的领路人。在教学过程中,善于抓住学生的兴趣所在,可以将相对枯燥的数学以一种简单易懂,活泼轻松的方式传授给学生。

 


  用1、2、3、4(每个数恰好用一次)可组成24个四位数,其中共有多少个能被11整除?

  解答:被 11整除的数的特征是:奇数位上数字的和与偶数位上数字的和之差能被11整除。因为1、2、3、4这几个数字的和之差不可能大于11,因此要被11整除, 只能是奇数位上数字的和与偶数位上数字的和之差等于0。所以1和4必须同是奇数位上的数字或者同时偶数位上的数字,这样才能满足以上要求。


  当1和4都是奇数位上的数字时,这样的四位数有:1243、1342、4213、4312;当1和4都是偶数位上的数字时则为:2134、3124、2431、3421。所以满足题目要求的数一共有8个。

名师介绍:

  郑和森老师能够显著提高孩子对于奥数的兴趣,孩子的解题能力和奥数成绩都能有明显的提高.所教的学生在迎春杯,希望杯等全国及北京等各种比赛中都获过奖。所教的学生中,每年都有考入人大附中,十一,四中,实验等等的北京市重点中学。

教学特色:

  为人幽默风趣,亲切活泼的授课风格深受广大学生喜爱,不仅能成为学生的好老师,更能很快成为学生的好伙伴,成为学生求学路中思想的领路人。在教学过程中,善于抓住学生的兴趣所在,可以将相对枯燥的数学以一种简单易懂,活泼轻松的方式传授给学生。

相关推荐

点击查看更多
首页 导航