苏教版数学六年级上册教案 圆的面积(二)
教学目标
1.使学生理解圆面积公式的推导过程,掌握求圆面积的方法并能正确计算;
2.培养学生动手操作的能力,启发思维,开阔思路;
3.渗透初步的辩证唯物主义思想。
教学重点和难点
圆面积公式的推导方法。
教学过程设计
(一)复习准备
我们已经学习了圆的认识和圆的周长,谁能说说圆周长、直径和半径三者之间的关系?
已知半径,圆周长的一半怎么求?
(出示一个整圆)哪部分是圆的面积?(指名用手指一指。)
这节课我们一起来学习圆的面积怎么计算。
(板书课题:圆的面积)
(二)学习新课
1.我们以前学过的三角形、平行四边形和梯形的面积公式,都是转化成已知学过的图形推导出来的,怎样计算圆的面积呢?我们也要把圆转化成已学过的图形,然后推导出圆面积的计算公式。
决定圆的大小的是什么?(半径)所以,分割圆时要保留这个数据,沿半径把圆分成若干等份。
展示“曲”变“直”的变化图。
2.动手操作学具,推导圆面积公式。
为了研究方便,我们把圆等分成16份。圆周部分近似看作线段,其
用自己的学具(等分成16份的圆)拼摆成一个你熟悉的、学过的平面图形。
思考:
(1)你摆的是什么图形?
(2)所摆的图形面积与圆面积有什么关系?
(3)图形的各部分相当于圆的什么?
(4)你如何推导出圆的面积?
(学生开始动手摆,小组讨论。)
指名发言。(在幻灯前边说边摆。)
①拼出长方形,学生叙述,老师板书:
②还能不能拼出其它图形?
学生可以拼出:
等等……
刚才,我们用不同思路都能推导出圆面积的公式是:S=πr2。这几种思路的共同特点都是将圆转化成已学过的图形,并根据转化后的图形与圆面积的关系推导出面积公式。
例1 一个圆的半径是4厘米,它的面积是多少平方厘米?
S=πr2=3.14×42=3.14×16=50.24(平方厘米)
答:它的面积是50.24平方厘米。
想一想;求圆面积S应知道什么?如果给d和C,又怎样求圆面积?
(三)巩固反馈
1.求下面各圆的面积。
r=2(单位:分米) d=6(单位:分米)
2.选择题。
用2米长的绳子把小羊拴在草地上的木框上,羊吃到地上的草的最大面积是多少?
(1)3.14×22=12.56(米)
(2)3.14×22=12.56(平方米)
(3)3.14×32=28.26(平方米)
3.思考题:
已知正方形的面积是18平方米,求圆的面积。(如图)
课堂教学设计说明
1.使学生运用迁移的方法,把新知识转化为旧知识,把圆转化成已经学过的图形。
2.在面积公式推导过程中,老师介绍分割圆的方法,展示由“曲”变“直”的过程,然后引导学生动手操作,小组讨论,从各个角度推导出圆面积公式。培养学生动手操作,口头表达和逻辑思维的能力,渗透了极限和转化思想。
3.安排了坡度适当、由易到难的练习题,使学生由浅入深地掌握了知识,形成了技能。同时,还注意培养学生逻辑推理的能力。