小学六年级数学第六单元《解决问题的策略》教案
本单元教学转化的策略。转化是解决问题时经常采用的方法,能把较复杂的问题变成较简单的问题,把新颖的问题变成已经解决的问题。转化的手段和具体方法是多样而灵活的,既与实际问题的内容和特点有关,也与学生的认知结构有关,掌握转化策略不仅有利于问题的解决,更有益于思维的发展。
本单元编排两道例题和一个练习,通过例1的教学让学生联系实际感悟转化的含义,体会无论在过去还是现在,转化都是解决问题的有效方法。例2在解决较复杂的分数问题时应用转化策略,进一步体验转化的意义。要指出的是,与前几册教材教学的倒推、置换等策略相比,转化策略的应用更为广泛,两道例题与练习十四涉及的数学内容也更丰富。本单元的教学不以学生能够解决教材里的各个问题为目的,而在于学生对转化策略的体验与主动应用。具有初步的转化意识和能力,对以后的学习与解决问题将会产生十分积极的作用。
1.回忆经历过的转化活动,初步感悟转化。
学生在以前的数学学习中虽然经常进行转化,但是他们对转化活动的体验还处于无意识的状态。例1通过回忆曾经进行过的转化,引导学生体验转化。首先比较方格纸上两个图形的面积,这两个图形都不是简单的图形,直接看出面积是不是相等有困难,用数方格的方法求面积很麻烦。如果把两个图形都转化成长方形,就能从转化后的两个长方形完全相同,知道原来的两个图形面积相等。教材让学生在直观的情境中想到转化,并应用图形的平移和旋转知识进行图形的等积变形,体会转化的含义和应用的手段,感受转化在解决这个问题时的价值。然后回忆以前学习中曾经进行过的转化,除了探索图形面积公式时的转化、计算小数乘法和分数除法时的转化,学生还能想到许多具体的事例。通过回忆和交流,意识到转化是经常使用的策略,从而主动应用转化的策略解决问题。
“试一试”引导学生把1/2+1/4+1/8+1/16转化成1-1/16计算。学生看到原题会想到先通分再相加,为了促成转化,教材提出把原来的算式转化成另一个算式的要求,并给出图形帮助转化。教学这道题要注意三点:一是让学生在直观图形的启发下,独立进行转化。二是在交流时展开转化的思考过程,要数形结合解释图意,图中的正方形表示1,1/2+1/4+1/8+1/16的和就是正方形里涂色部分的大小。还要突出算式转化是根据“涂色部分的大小等于1减空白部分的差”进行的。三是体会把原题转化,使计算简便了,让学生带着对转化的良好体验进行“练一练”的练习。
“练一练”的关键是理解右边图形右上方的折线的长度等于长方形的一条长与一条宽的和,可以通过折线中的4条线段分别向右或向上平移帮助理解。在小组里说说解题的策略,交流转化策略在解决这个问题时的具体应用,体会转化使复杂问题变得简单了。
2.转化要利用概念进行推理。
例2解答较复杂的分数应用题,按本册教材第一单元教学的解题思路,设女生有x人,男生就是2/3x人,可以列出方程x+2/3x=35解答。如果把“男生人数是女生的2/3”转化成“女生人数是美术组总人数的3/5”,那么,根据分数乘法的意义,列算式35×3/5能很快算出女生人数。教材预设学生主动想到这样转化是有困难的,所以指出了转化的方向:如果把“男生人数是女生的2/3”转化成女生人数是美术组总人数的几分之几,就可以直接用乘法计算,让学生在“已知美术组的人数,求女生人数”这个问题情境中体会这样转化是解决问题的策略。教材放手让学生自主开展具体的转化活动,凭借对“男生人数是女生的2/3”的理解,或是把2/3看作男、女生人数的份数关系,或是把2/3看作男、女生人数的比,都能通过推理得到女生人数是美术组总人数的3/5。“练一练”把美术组人数是合唱组的5/8理解成美术组人数和合唱组人数的比是5∶8,就能转化成合唱组人数是美术组的8/5,于是不再用列方程的方法,而利用分数乘法较快地算出合唱组的人数。
需要再次指出,例2和“练一练”都先向学生提示转化的方向,再让他们开展具体的转化活动。这就表明,教学不以这些分数应用题的一题多解为目的,而是以体会转化策略,培养推理能力为教学要求。
3.在丰富的题材里灵活应用转化策略。
为了让学生更好地体验转化策略,练习十四选择了丰富的题材,引导学生进行转化。
第1题是解决问题方法的转化,从数出比赛的场次到算出比赛的场次。在16支球队比赛的示意图上,不仅可以数出一共要进行15场比赛,还能看到第一轮先进行8场比赛淘汰了8支球队,第二轮再进行4场比赛淘汰4支球队,第三轮又进行2场比赛淘汰2支球队,最后进行1场比赛淘汰1支球队,即每场比赛淘汰1支球队。从而理解16支球队中只有1支球队是冠军,其他15支球队都要先后被淘汰,所以一共要进行16-1=15(场)比赛。照此类推,64支球队参加比赛,产生冠军要进行64-1=63(场)比赛。
第2、3题是图形保持面积不变或周长不变前提下的形状转化。第2题的第三个图形稍难些,如果像下图那样,分别绕A点和B点把两个直角三角形顺时针旋转90°,转化后的涂色部分刚好占10个小方格,是正方形的10/16即5/8。
第3题的第二个图形的周长正好与半径4厘米的圆的周长相等,下图是转化时的思考。
第4~6题是数量关系的转化。第4题如果把第一堆的黑子与第二堆的白子互换,那么第一堆就全部是白子,第二堆全部是黑子。第5、6题在图形的帮助下,进行分数的转化困难不会很大。和例2一样,这两题的转化方向是由题目提示的。