全国站
奥数网

全国站
奥数网

数学逻辑推理题40(钟表谜题)

本站原创 2009-05-18 15:51:40

  在一天的24小时之中,时钟的时针、分针和秒针完全重合在一起的时候有几次?都分别是什么时间?你怎样算出来的?

  【解答】只有两次

  假设时针的角速度是ω(ω=π/6每小时),则分针的角速度为12ω,秒针的角速度为72ω。分针与时针再次重合的时间为t,则有12ωt-ωt=2π,t=12/11小时,换算成时分秒为1小时5分27.3秒,显然秒针不与时针分针重合,同样可以算出其它10次分针与时针重合时秒针都不能与它们重合。只有在正12点和0点时才会重。

  证明:将时针视为静止,考察分针,秒针对它的相对速度:

  12个小时作为时间单位“1”,“圈/12小时”作为速度单位,

  则分针速度为11,秒针速度为719。

  由于11与719互质,记12小时/(11*719)为时间单位Δ,

  则分针与时针重合当且仅当 t=719kΔ k∈Z

  秒针与时针重合当且仅当   t=11jΔ  j∈Z

  而719与11的最小公倍数为11*719,所以若t=0时三针重合,则下一次三针重合

  必然在t=11*719*Δ时,即t=12点。

 

相关推荐

点击查看更多
首页 导航