平行四边形的认识
教学目标
1.使学生掌握平行四边形的意义及特征,了解其特性,能够正确画出底所对应的高.
2.通过观察、动手操作,培养学生抽象概括能力和初步的空间观念.
教学重点
掌握平行四边形的意义及特征.
教学难点
理解平行四边形与长方形、正方形的关系.
教学过程
一、复习准备.
我们已经学过一些几何图形,观察一下这些图形有什么共同特点?
在明确它们是由四条线段围成的基础上概括出:由四条线段围成的图形是四边形.
教师提问:我们学过哪些四边形呢?
学生举例.
说说哪些物体表面是平行四边形?
教师出示下图,让学生初步感知平行四边形.
二、学习新课.
1.理解平行四边形的意义.
首先出示一组图形.
教师提问:这些图形是什么形?它们有什么特征?
(1)看到这个名称你能想到什么?(板书:平行、四边形)
教师提问:你认为什么是四边形?你学过的什么图形是四边形的?
(2)动手测量.
指名到黑板上用三角板检验一下,每个图形的对边怎样.
(3)抽象概括.
根据你测量的结果,能说说什么叫平行四边形吗?
小组先讨论,再让到黑板上测量的同学说出检验与测量的结果,从而引出平行四边形的确切定义.(板书:两组对边分别平行的四边形叫做平行四边形.)
教师强调说明:只要四边形每组对边分别平行就能确定它的两组对边相等,因此平行四边形的定义是“两组对边分别平行的四边形”.
(4)反馈:判断下面图形哪些是平行四边形?【演示课件“平行四边形”,出示反馈练习】
2.平行四边形的特征和特性.
(1)教师演示.
教师拿一个长方形木框,用两手捏住长方形的两个对角,向相反方向拉.引导学生观察两组对边有什么变化?拉成了什么图形?什么没有变?
学生明确:两组对边边长没有变,变成了平行四边形,四个直角变成了锐角和钝角.
(2)动手操作.
学生自己动手,把准备好的长方形框拉成平行四边形,并测量两组对边是否还平行.
(3)归纳平行四边形特性.
根据刚才的实验、测量,引导学生概括出:平行四边形具有不稳定性.(板书:易变形)
(4)对比.
三角形具有稳定性,不容易变形.平行四边形与三角形不同,容易变形,也就是具有不稳定性.
这种不稳定性在实践中有广泛的应用.你能举出实际例子来吗?
(如汽车间的保护网,推拉门、放缩尺等.)
3.学习平行四形的底和高.
(1)认识平行四边形的底和高.
教师边演示边说明:从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高.这条对边叫做平行四边形的底.
(2)找出相应的底和高.【继续演示课件“平行四边形”】
引导学生观察:图中有几条高?它位相对应的底各是哪条线段?
使学生明确:从B点画高,它的底是CD;从D点画高,它的底是BC.
(3)画平行四边形的高.【继续演示课件“平行四边形”】
教师说明:平行四边形高的画法与三角形画高的方法基本相同,都用过直线外一点画已知直线的垂线的方法.从一条边上任意一点都可以向它的对边画高,但通常是从一个角的顶点向它的对边画高.这里高要画在平行四边形内,不要求把高画在底边的延长线上.
①教师利用长方形框,拉动长方形的边,使其变成不同的平行四边形.(还可以把平行四边形变成长方形)
引导学生比较长方形和平行四边形的异同点,使学生明确:
相同点是两组都分别平行,所以长方形也具有平行四边形的特征,也属于平行四边形.不同点是长方形的四个角都是直角,所以把长方形看作是特殊的平行四边形.
②引导学生比较正方形和平行四边形的相同点和不同点.
使学生明确:正方形也是两组对边分别平行,四个角也是直角,正方形也可看作是特殊的平行四边形.因为长方形和正方形都有两组对边分别平行,四个角是直角的共同点,而正方形还有四条边相等的这一特征,因此正方形可看作是特殊的长方形.
③这三种图形之间的关系可以用集合图来表示【继续演示课件“平行四边形”】
三、巩固练习.【继续演示课件“平行四边形”】
1.判断下列图形哪些是平行四边形?
2.指出平行四边形的底,并画出相应的高.
3.在钉子板上围出不同的平行四边形.
4.数一数下图中有( )个平行四边形.
四、教师小结.
1.提问:通过今天的学习,你都学会了什么?(平行四边形的意义,特征及特性)
2.组织学生对所学知识提出质疑,并解疑.
3.教师提问:我们已学过的长方形、正方形是平行四边形吗?它们有什么关系?(因为长、正方形也具备平行四边形的特点所以长、正方形是特殊的平行四边形)
五、布置作业.
1.用一套七巧板拼出不同的平行四边形.
2.在下面每个平行四边形中分别画出两条不同的高.