济南小升初数学应用题及参考答案
济南小升初数学应用题答案
1.解:AB距离=(4.5×5)/(5/11)=49.5千米
2、解:客车和货车的速度之比为5:4
那么相遇时的路程比=5:4
相遇时货车行全程的4/9
此时货车行了全程的1/4
距离相遇点还有4/9-1/4=7/36
那么全程=28/(7/36)=144千米
3、解:甲乙速度比=8:6=4:3
相遇时乙行了全程的3/7
那么4小时就是行全程的4/7
所以乙行一周用的时间=4/(4/7)=7小时
4、解:甲走完1/4后余下1-1/4=3/4
那么余下的5/6是3/4×5/6=5/8
此时甲一共走了1/4+5/8=7/8
那么甲乙的路程比=7/8:7/10=5:4
所以甲走全程的1/4时,乙走了全程的1/4×4/5=1/5
那么AB距离=640/(1-1/5)=800米
5、解:一种情况:此时甲乙还没有相遇
乙车3小时行全程的3/7
甲3小时行75×3=225千米
AB距离=(225+15)/(1-3/7)=240/(4/7)=420千米
一种情况:甲乙已经相遇
(225-15)/(1-3/7)=210/(4/7)=367.5千米
6、解:甲相当于比乙晚出发3+3+3=9分钟
将全部路程看作单位1
那么甲的速度=1/30
乙的速度=1/20
甲拿完东西出发时,乙已经走了1/20×9=9/20
那么甲乙合走的距离1-9/20=11/20
甲乙的速度和=1/20+1/30=1/12
那么再有(11/20)/(1/12)=6.6分钟相遇
7、解:路程差=36×2=72千米
速度差=48-36=12千米/小时
乙车需要72/12=6小时追上甲
8、甲在相遇时实际走了36×1/2+1×2=20千米
乙走了36×1/2=18千米
那么甲比乙多走20-18=2千米
那么相遇时用的时间=2/0.5=4小时
所以甲的速度=20/4=5千米/小时
乙的速度=5-0.5=4.5千米/小时
9、解:速度和=60+40=100千米/小时
分两种情况,
没有相遇
那么需要时间=(400-100)/100=3小时
已经相遇
那么需要时间=(400+100)/100=5小时
10、解:速度和=9+7=16千米/小时
那么经过(150-6)/16=144/16=9小时相距150千米
11、速度和=42+58=100千米/小时
相遇时间=600/100=6小时
相遇时乙车行了58×6=148千米
或者
甲乙两车的速度比=42:58=21:29
所以相遇时乙车行了600×29/(21+29)=348千米
12、将两车看作一个整体
两车每小时行全程的1/6
4小时行1/6×4=2/3
那么全程=188/(1-2/3)=188×3=564千米
13、解:二车的速度和=600/6=100千米/小时
客车的速度=100/(1+2/3)=100×3/5=60千米/小时
货车速度=100-60=40千米/小时
14、解:速度和=(40-4)/4=9千米/小时
那么还需要4/9小时相遇
15、甲车到达终点时,乙车距离终点40×1=40千米
甲车比乙车多行40千米
那么甲车到达终点用的时间=40/(50-40)=4小时
两地距离=40×5=200千米
16、解:快车和慢车的速度比=1:3/5=5:3
相遇时快车行了全程的5/8
慢车行了全程的3/8
那么全程=80/(5/8-3/8)=320千米
17、解:最短距离是已经相遇,最长距离是还未相遇
速度和=100+120=220米/分
2小时=120分
最短距离=220×120-150=26400-150=26250米
最长距离=220×120+150=26400+150=26550米
18、解:
原来速度=180/4=45千米/小时
实际速度=45+5=50千米/小时
实际用的时间=180/50=3.6小时
提前4-3.6=0.4小时
19、算术法:
相遇后的时间=12×3/7=36/7小时
每小时快12千米,乙多行12×36/7=432/7千米
相遇时甲比乙多行1/7
那么全程=(432/7)/(1/7)=432千米
20、解:乙的速度=52×1.5=78千米/小时
开出325/(52+78)=325/130=2.5相遇
21、解:乙行全程5/8用的时间=(5/8)/(1/10)=25/4小时
AB距离=(80×25/4)/(1-1/6)=500×6/5=600千米
22、解:甲乙速度比=40:45=8:9
甲乙路程比=8:9
相遇时乙行了全程的9/17
那么两地距离=20/(9/17-1/2)=20/(1/34)=680千米
23、解:把全程看作单位1
甲乙的速度比=60:80=3:4
E点的位置距离A是全程的3/7
二次相遇一共是3个全程
乙休息的14分钟,甲走了60×14=840米
乙在第一次相遇之后,走的路程是3/7×2=6/7
那么甲走的路程是6/7×3/4=9/14
实际甲走了4/7×2=8/7
那么乙休息的时候甲走了8/7-9/14=1/2
那么全程=840/(1/2)=1680米
24、解:相遇时未行的路程比为4:5
那么已行的路程比为5:4
时间比等于路程比的反比
甲乙路程比=5:4
时间比为4:5
那么乙行完全程需要10×5/4=12.5小时
那么AB距离=72×12.5=900千米
25、解:甲乙的相遇时的路程比=速度比=4:5
那么相遇时,甲距离目的地还有全程的5/9
所以AB距离=4×2/(5/9)=72/5=14.4千米
26.、解:客车和货车的速度比=60:48=5:4
将全部路程看作单位1
那么第一次的相遇点在距离甲地1×5/(5+4)=5/9处
二次相遇是三个全程
那么第二次相遇点距离乙地1×3×5/9-1=5/3-1=2/3处
也就是距离甲地1-2/3=1/3处
所以甲乙距离=120/(5/9-1/3)=120/(2/9)=540千米
27、解:两车每小时共行全程的1/5
那么3小时行全程的1/5×3=3/5
所以全程=(180+210)/(1-3/5)=390/(2/5)=975千米
28、解:将全部的路程看作单位1
因为时间一样,路程比就是速度比
甲乙路程比=速度比=4:5
乙的速度快,乙到达A点,甲行了1×4/5=4/5
此时乙提速1/3,那么甲乙速度比=4:5×(1+1/3)=3:5
甲走了1-4/5=1/5,那么乙走了(1/5)/(3/5)=1/3
此时甲提速,速度比由3:5变为3(1+1/4):5=3:4
甲乙距离1-1/3=2/3
相遇时乙一共走了1/3+(2/3)×4/(3+4)=1/3+8/21=5/7
也就是距离A地5/7的全程
第一次相遇时的相遇点距离A地4/9全程
那么AB距离=34/(5/7-4/9)=34/(17/63)=126千米
29、解:设此时是5点a分
分针每分钟走1格,那么时针每分钟走5/60=1/12格
根据题意
a-30=5-a/12
13/12a=35
a=420/13分≈32分18秒
此时是5点32分18秒
此处的30和5表示30格和5格,即钟面上的1格
看作特殊的行程问题
30、解:顺流速度1/3,逆水速度=1/4.5=2/9
流水速度=(1/3-2/9)/2=1/18
需要1/(1/18)=18小时

