奥校精选试题及答案1(2)
【二年级】
1.368-199等于多少呢?
解答:原式=368-200+1
=168+1
=169
2.按数字规律填出下图中空缺的数:
解答:本题的规律为上面两个数的和等于下面两个数的乘积,因此应该填7。
【三年级】
1.操场上的学生们进行队列表演,他们排成了8行8列的正方形队列,如果去掉一行一列,请问要去掉多少人?还剩多少人?
解答:每行每列都有8个人,而这一行一列必有一个人是重复的,所以减少的人数是8×2-1=15(人),8×8-15=49(人)
2.有7个数,它们的平均数是18。去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下5个数的平均数是20。求去掉的两个数的乘积。
解答:第一个去掉的数是18×7-19×6=12,第二个去掉的数是19×6-20×5=14,这两个数的乘积为12×14=168
还可以用移多补少的方法:18-(19-18)×6=12 19-(20-19)×5=14 12×14=168
【四年级】
1.(1686+1683+1689+1681+1691+1685+1687+1678)÷8
解答:原式=(1680×8+6+3+9+1+11+5+7-2)÷8
=1680×8÷8+(6+3+9+1+11+5+7-2)÷8
=1680+40÷8
=1685
2.若在等差数列2,5,8,…的每相邻两项中间插入三项,使它构成一个新的等差数列,则原数列的第10项,是新数列的第( )项。
解答:在每相邻两项中间插入三项,则原数列的第10项之前共插入了3×9=27项,故原数列的第10项是新数列的第10+27=37项。
【五年级】
1.求4018和7257的最大公约数。
解答:(7257,4018)=(3239,4018)=(3239,779)=(123,779)=(123,41)=41
2.把一个自然数的各个数位上的数码相加,所得的和若不是一位数,则再把它的各个数位上的数码相加,直到和是一位数为止。将1—2009这2009个自然数都经过上述方法处理后,所得到的2009个数中,2和3哪个多?
解答:一个数除以9的余数就是它数字和除以9的余数,因此按照题目中的操作办法,每个数最后都会变成它除以 9的余数。连续9个自然数除以9的余数都互不相同,2009÷9=223……2,说明这2009个数中除以9余2的有224个,余3的有223个,所以在最后得到的2009个数中,2比3多。