Image Modal

长沙
长沙奥数网

长沙站
奥数网

小升初学生有效提高奥数成绩四大步

长沙奥数网编辑整理 2012-05-09 14:48:33

  奥数一直是小升初择校考试的重中之重,不少重点中学都比较亲睐奥数成绩好的学生,因为他们认为,奥数成绩好的学生将来很有可能成为理科尖子生。那要如何有效提高小升初的奥数成绩呢?长沙奥数网编辑给出了以下建议,希望对大家有所帮助。

  第一步:初步理解该知识点的定理及性质

  1、提出疑问:什么是抽屉原理?

  2、抽屉原理有哪些内容呢?

  【抽屉原理1】:将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。

  【逆抽屉原理】:从n个抽屉中拿出多于n件的物品,那么至少有2个物品来至于同一个抽屉。

  【抽屉原理2】:将多于mn+1个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+1个的物体。

  第二步:学习最具有代表性的题目

  (例1)证明:任取8个自然数,必有两个数的差是7的倍数

  (例2)对于任意的五个自然数,证明其中必有3个数的和能被3整除

  【总结】以上的例题都是在考察抽屉原理在整除与余数问题中的运用。以上的题目我们都是运用抽屉原理来解决的。

  第三步:找出解决此类问题的关键。

  (例3)从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。

  (例4)从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12。

  (例5)从1到20这20个数中,任取11个数,必有两个数,其中一个数是另一个数的倍数。

  {1,2,4,8,16}

  {3,6,12},{5,10,20}

  {7,14},{9,18}

  {11},{13},{15},{17},{19}。

  【总结】根据题目条件灵活构造“抽屉”是解决这类题目的关键。

  第四步:重点解决该类型的拓展难题

  我们先来做一个简单的铺垫题

  【铺垫】请说明,任意3个自然数,总有2个数的和是偶数。

  (例6)请说明,对于任意的11个正整数,证明其中一定有6个数,它们的和能被6整除。

  【总结】上面两道题目用到了抽屉原理中的“双重抽屉”与“合并抽屉”,都是在原有典型抽屉原理题目的基础上进行的拓展。


 

 

 

编辑推荐

长沙小升初择校并不是非要四大名校

长沙小升初学生小学毕业考试备考攻略

长沙小升初孩子上岸后可准备毕业考试

长沙小升初提高英语成绩五大备考秘籍

相关推荐

点击查看更多
重点初中
首页 导航