宁波小升初数学冲刺应用题训练及解析(九)(2)
84. 甲、乙两船在相距90千米的河上航行,如果相向而行,3小时相遇,如果同向而行则15小时甲船追上乙船.求在静水中甲、乙两船的速度.
两船速度和:90÷3=30(千米)
两船速度差:90÷15=6(千米)
乙船的速度:(30-6)÷2=12(千米/小时)
甲船的速度:12+6==18(千米/小时)
答:甲船的速度是18千米/小时,乙船的速度是12千米/小时.
85. 二年级两个班共有学生90人,其中少先队员有71人,一班少先队员占本班人数的75%,二班少先队员占本班人数的5/6.一班少先队员人数比二班少先队员人数多几人?
解:一班人数:(5/6x90-71)/(5/6-75%)=48(人)
一班少先队员人数比二班少先队员多的人数:75%x48-5/6x(90-48)=1(人)
解:
假设两个班的少先队员都占本班人数的5/6,
那么少先队员人数就占两班总人数的5/6,即90×5/6=75人。
比实际多了75-71=4人。
所以一班有少先队员4÷(5/6-75%)=48人,二班有90-48=42人。
那么一班比二班多48×75%-42×5/6=1人
86. 一个容器中已注满水,有大、中、小三个球.第一次把小球沉入水中,第二次把小球取出,把中球沉入水中,第三次把中球取出,把小球和大球一起沉入水中,现知道每次从容器中溢出水量的情况是:第一次是第二次的1/2,第三次是第二次的1.5倍.求三个球的体积之比.
解:
第一次溢出的水是小球的体积,假设为1
第二次溢出的水是中球的体积-小球的体积
第三次溢出的水是大球的体积+小球的体积-中球的体积
第一次是第二次的1/2,所以中球的体积为1+2=3
第三次是第二次的1.5倍,第二次是2;所以大球的体积为3-1+3=5
V小球:V中球:V大球=1:3:5
87. 某人翻越一座山用了2小时,返回用了2.5小时,他上山的速度是3000米/小时,下山的速度是4500米/小时.问翻越这座山要走多少米?
解:
往返共用去2+2.5=4.5小时。
所有上坡用的时间和所有下坡用的时间比是4500:3000=3:2。
所有上坡用的时间是4.5÷(3+2)×3=2.7小时,
所以翻越这座山要走的路程就相当于所有的山坡路,即3000×2.7=8100米
解:上山的速度是3000米/小时,所以走每一米需要时间1/3000小时
下山的速度是4500米/小时,所以走每一米需要时间1/4500小时
上山走的总路程=下山走的总路程=全程
相当于用3000米/小时和4500米/小时的速度和(2+2.5)小时走了 2个全程(一个全程上山和一个全程下山)
(2+2.5)÷(1/3000+1/4500)=8100米