独家解析华杯试题:计算和数论(4)
9、【14届"华罗庚金杯"少年数学邀请赛决赛B卷】
方格中的图形符号"◇","○","","☆"代表填入方格中的数,相同的符号表示相同的数。如图所示,若第一列,第三列,第二行,第四行的四个数的和分别为36,50,41,37,则第三行的四个数的和为 。
10、【第14届华罗庚金杯少年数学邀请赛初赛】
从4个整数中任意选出3个,求出它们的平均值,然后再求这个平均值和余下1个数的和,这样可以得到4个数:4、6、和
,则原来给定的4个整数的和为( )。
小李应聘某公司主任职位时,要根据下表回答主任的月薪是多少,请你来回答这个问题。
12、【第13届"华罗庚金杯"少年数学邀请赛决赛】
对于大于零的分数,有如下4个结论:
1.两个真分数的和是真分数;
2.两个真分数的积是真分数;
3.一个真分数与一个假分数的和是一个假分数;
4.一个真分数与一个假分数的积是一个假分数。
其中正确结论的编号是()
13、【第13届"华罗庚金杯"少年数学邀请赛初赛】
14、【第12届"华罗庚金杯"少年数学邀请赛初赛】
如图,某公园有两段路,AB=175米,BC=125米,在这两段路上安装路灯,要求A、B、C三点各设一个路灯,相邻两个路灯间的距离都相等,则在这两段路上至少要安装路灯( )个。
15、【第14届"华罗庚金杯"少年数学邀请赛决赛B卷】
六个分数的和在哪两个连续自然数之间?
16、【第14届华罗庚金杯少年数学邀请赛初赛】
在大于2009的自然数中,被57除后,商与余数相等的数共有( )个。
17、【第14届华罗庚金杯少年数学邀请赛初赛】
在19,197,2009这三个数中,质数的个数是( )。
(A)0 (B)1 (C)2 (D)3
18、【第14届"华罗庚金杯"少年数学邀请赛决赛B卷】
某班学生要栽一批树苗。若每个人分配k棵树苗,则剩下20棵;若每个学生分配9棵树苗,则还差3棵。那么k=
19、【第14届"华罗庚金杯"少年数学邀请赛决赛B卷】
已知三个合数A,B,C两两互质,且A×B×C=1001×28×11,那么A+B+C的最小值为 。
真题答案:
1、答案:2
3×6024=3×6×1004=3×6×4016÷4=9/2×4016,分子分母对应都是2倍
2、答案:B
原式==
=2
3、答案:
×0.63=5
×0.63=
=
=
4、答案:16
(105×95+103×97)-(107×93+lOl×99)
=(100+5)×(100-5)+(100+3)×(100-3)-
(100+7)×(100-7)-(100+1)×(100-1)
=1002-52+1002-32-1002+72-1002+12
=16
5、答案:19
∴a+b+c+d=2+3+5+9=19
6、答案:37
假定百位以上为a,则该数为a03,乘以2后变成b06(b=2a)
而两个1+2+3+...+n=n(n+1)/2,因此有n(n+1)=b06
两个相邻数相乘末位是6的只有7*8和2*3.
首先看7*8:
假定n的十位是c,则有c7*c8=b06,而c7*c8的十位是由8c+5+7c=15c+5的个位得来的。
显然,要使其个位为0,只需要让c为奇数即可。再来看百位,由于b=2a,因此b的个位(即n(n+1)的百位)
必定是偶数。c7*c8的百位为:c^2加上15c+5除以10后的商。由于c是奇数,c^2也是奇数,因此必须保证15c+5除以10的商为奇数。显然c最小取3可以达到要求(15*3+5=50)。此时有37*38=1406,n=37
再来看2*3:
假定n的十位是c,则有c2*c3=b06,而c2*c3的十位是由2c+3c=5c的个位得来的。
显然,要使其个位为0,只需要让c为偶数即可。c2*c3的百位为:c^2加上5c除以10后的商。由于c是偶数,c^2也是偶数,因此必须保证5c除以10的商为偶数。显然c最小取4可以达到要求(5*4=20)。此时有42*43=1806,n=42
所以最小的n值就是37。
7、答案:9
原式=10-(1/2+1/4+1/8+……+1/1024)=10-1023/1024=9又1/1024
(1/2+1/4=3/4,3/4+1/8=7/8,7/8+1/16=15/16,……递推往后相加1/2+1/4+1/8+……+1/1024=1023/1024)
8、答案:65/81
先求剩下的(1-1/3)×(1-1/3)×(1-1/3)×(1-1/3)=16/81
喝了1-16/81=65/81
9、答案:33
方格中的图形符号"◇","○","","☆"代表填入方格中的数,相同的符号
表示相同的数.如图所示,若第一列,第三列,第二行,第四行的四个数的和分别为36,50,41,37,则第三行的四个数的和为33.(方程解法)
3◇+○=36
2+2○=50
3○+☆=41
3◇+=37
解得=13,○=12,◇=8,☆=5
则第三行的四个数的和为33。
10、答案:10
设四个数分别为a、b、c、d,则得到的4个数分别是
(a+b+c)÷3+d=4
(a+b+d)÷3+c=6
(a+c+d)÷3+b=16/3
(b+c+d)÷3+a=14/3
整理一下,得
a+b+c+3d=12
a+b+d+3c=18
a+c+d+3b=16
b+c+d+3a=14
四式相加,得
6(a+b+c+d)=60
a+b+c+d=10
答:原来给定的4个整数的和是10
11、答案:2900
会计+出纳=3000
出纳+秘书=3200
秘书+主管=4000
主管+主任=5200
主任+会计=4400
五个式子相加后除以2可得:
会计+出纳+秘书+主管+主任=9900
再减去第一个和第三个式子,可得主任月薪为:
9900-3000-4000=2900元
12、答案:2、3
①1/2+1/2=1;④2/5×3/2=3/5
13、答案:D
这道题很简单,即分数比较大小,可以先比较ab的大小,它们有共同部分,只看不同部分,而且"对于小于1的分数,当分子和分母的差一样的情况下,分母越大,分数越大",记住这个性质非常容易解决。
14、答案:11
175与125的最大公约数为25,所以取25米为两灯间距,175=25×7,125=25×5,AB段应按7盏灯,BC段应按5盏灯,但在B点不需重复按灯,故共需安装7+5-1=11(盏)
15、
16、答案:22个
N=57n+n=58n>2009,其中n<57,
n>34
故34<n<57
n可能取到的值有57-34-1=22个
17、答案:C
19是常见的质数,197容易检验知也是质数,本题主要是考察2009这个数是否是质数。实际上,2009=7×41,是个合数,所以在19,197,2009这三个数中有2个质数。正确答案为C
18、答案:8
设有n个人,则可列方程9n-3=kn+20
移项:(9-k)n=23
注意到23是个质数,而n,k都要是整数,且n不等于1(不止一个学生),所以n=23,9-k=1,所以k=8
19、答案:222
A×B×C=11011×28=4×7×7×11×11×13
因为两两互质,三个数的乘积一定,当三个数靠近时甚至相等时,三个数的和最小
所以A=4×13,B=7×7,C=11×11(A,B,C的值可交换)
所以A+B+C的最小值为52+49+121=222

