深圳
深圳奥数网

深圳站
奥数网

六年级希望杯近三届8大模块知识分析(2)

深圳奥数网 2012-10-16 09:44:26

  五、应用题模块

  第七、第八届希望杯热衷于考察应用题,但最近一届有所缓和。

  第七届的试题中,比例应用题、分百应用题占了太大的份额,竟然占了20题中的6题,考察知识点过于单一;这个现象在第八届试题中有所改善,加入了还原逆推、和差倍、牛吃草等来丰富题型;而到了第九届,应用题一共只出现了2题,分别考察了工程问题与牛吃草问题。

  几点需要注意的是:

  1、工程问题每届都有考;

  2、最近两届都考察了牛吃草问题;

  3、比例、分百虽然上届没有考察,但不可否认是六年级的重点;

  4、部分应用题用代数方法解更简洁。

  另外在试题篇幅上,应用题的字数较多,同学们做题时建议将关键的条件尤其是数值重点标记,同时看清问题问的是什么,千万不要出现看错条件、看错数、看错问题,导致做题思路完全正确,答案不对的情况,因为初赛只有选择和填空题型,判分也只有两种结果——10分或者0分。

  六、代数模块

  像第八届第2题这样直接考代数模块的题并不多,但不可否认的是,很多题如果采用代数法会迎刃而解,如第九届第2题的计算,可以将1×2.3×4.5设为a;第八届第4题,可以将这个分数分母设为2x,分子设为x+2。

  而应用题中,也有相当大一部分可以用方程来解,在熟练掌握一元一次方程的基础上,同学们应更上一层楼,学会处理两个未知数,这时候可能有三种情况:

  一种情况是可以根据条件列出2个方程,这时用等量代换法把一个字母表示成含另一个字母的代数式,从而转化成一元一次方程,如第八届的第11、14题;

  另一种情况是只能列一个像xy=15这样的方程,但未知数都是整数,如第八届第13题,设一棵白菜换x个胡萝卜,换了a次,列出方程化简后得到a(x-1)=30,而a、x都是整数,于是a、x可以分别求出;

  第三种情况是可能出现不定方程,不过近三届没有出现。

  七、组合模块

  组合模块很杂,涉及到的知识点特别多,第九届出现的五道组合类问题,考点分别是计数、数阵图、操作问题、排队报数问题与几何计数;第八届出现的三道题,分别考了最值问题,统筹问题与构造。

  这些考点中除了计数类型的问题较容易上手以外,剩下的类型都是难点。而计数类问题好上手,并不意味得分率高,如果计数方法不合理,就会出现漏数、重复数,从而得出错误答案,因此这类问题的出发点一定是先找到一个合理的计数方法,然后合理使用加法原理与乘法原理,需要注意计算过程中不出错,最后一定验算;当然,对于较小的数,也可以使用枚举法。

  其它题型难度较大,属高档题,需要一定的知识积累,如第九届第15题的排队报数问题,第八届第17题的统筹问题等。

  另外,近几届虽然没有涉及抽屉原理(最不利原则)与容斥原理这两个知识点,但建议同学们掌握它们。

  八、几何模块

  几何在杯赛中的地位是不言而喻的,近三届希望杯中每届至少有2题几何题,位置基本都在第9~11题。几何分为平面几何与立体几何,平面几何又可以分为直线型与曲线型。

  近三年考点较平均,几乎每个知识点都有涉及:第九届分别考察了曲线形面积、三视图法求表面积;第八届考察了立体图形平面展开图、曲线形面积;第七届考察了直线型面积、圆锥体积公式;除此之外还有一些涉及到几何的综合题型,如第九届11题(几何计数)、第八届11题(圆柱体)、第七届16题(长方体)。

  由此可见我们必须掌握的知识点有:

  1、平面几何直线型部分,除了熟练运用等积变换外,还需要重点掌握一些模型,如一半模型、沙漏模型、鸟头模型、燕尾模型、蝴蝶模型等;

  2、平面几何曲线型部分,需要掌握圆的周长、面积计算公式以及弧长、扇形面积计算公式;

  3、立体几何部分需要掌握立方体、长方体、圆柱、圆锥的体积与表面积计算公式,以及三视图法和平面展开图。

  另外,如果是遇到求阴影部分面积,我们可以有三种尝试:(1)阴影=整体-空白(2)将阴影分成几块分别求面积(3)通过切割、拼补、平移、旋转等方法巧求面积,较难。

  希望杯一试中的几何题难度都不大,一定要做足准备工作,比赛时尽力拿下。

 

 

推荐阅读:

  家庭教育中家长必须牢记的十个不要

  必看:30个小学奥数知识模块全汇总

  细数奥数七大模块以及各部分重点知识

 

  点击参与更多的讨论

首页 上一页 下一页 尾页

相关推荐

点击查看更多
重点初中
首页 导航