2017青岛华杯赛备考:积最大规律
2017年青岛赛区第22届华杯赛初赛即将开考,为了帮助青岛赛区华杯赛考生更好的备考初赛,开始每一日讲的华杯赛备考模式,供参考。
华杯赛每日一讲:积最大规律
【积最大的规律】
(1)多个数的和一定(为一个不变的常数),当这几个数均相等时,它们的积最大。用字母表示,就是
如果a1+a2+…+an=b(b为一常数),
那么,当a1=a2=…=an时,a1×a2×…×an有最大值。
例如,a1+a2=10,
…………→…………;
1+9=10→1×9=9;
2+8=10→2×8=16;
3+7=10→3×7=21;
4+6=10→4×6=24;
4.5+5.5=10→4.5×5.5=24.75;
5+5=10→5×5=25;
5.5+4.5=10→5.5×4.5=24.75;
…………→…………;
9+1=10→9×1=9;
…………→…………
由上可见,当a1、a2两数的差越小时,它们的积就越大;只有当它们的差为0,即a1=a2时,它们的积就会变得最大。
三个或三个以上的数也是一样的。由于篇幅所限,在此不一一举例。
由“积最大规律”,可以推出以下的结论:
结论1所有周长相等的n边形,以正n边形(各角相等,各边也相等的n边形)的面积为最大。
例如,当n=4时,周长相等的所有四边形中,以正方形的面积为最大。
>>>点击下一页查看例题解析