南京
南京奥数网

南京站
奥数网

小学奥数理论知识速查手册(9)

家长帮社区 2011-10-20 16:13:00

  20.分数与百分数的应用(五点名校命题必考知识点,小升初应用题命题中的五大命题专题之一)

  基本概念与性质:分数:把单位“1”平均分成几份,表示这样的一份或几份的数。

  分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

  分数单位:把单位“1”平均分成几份,表示这样一份的数。

  百分数:表示一个数是另一个数百分之几的数。

  常用方法:

  ①逆向思维方法:从题目提供条件的反方向(或结果)进行思考。

  ②对应思维方法:找出题目中具体的量与它所占的率的直接对应关系。

  ③转化思维方法:把一类应用题转化成另一类应用题进行解答。最常见的是转换成比例和转换成倍数关系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同一条件下的分率。常见的处理方法是确定不同的标准为一倍量。

  ④假设思维方法:为了解题的方便,可以把题目中不相等的量假设成相等或者假设某种情况成立,计算出相应的结果,然后再进行调整,求出最后结果。

  ⑤量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始终固定不变的。

  有以下三种情况:A、分量发生变化,总量不变。

  B、总量发生变化,但其中有的分量不变。

  C、总量和分量都发生变化,但分量之间的差量不变化。

  ⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化。

  ⑦同倍率法:总量和分量之间按照同分率变化的规律进行处理。

  ⑧浓度配比法:一般应用于总量和分量都发生变化的状况。

  21.分数大小的比较(五点名校命题必考知识点,小学各种竞赛中的命题热点)

  基本方法:

  ①通分分子法:使所有分数的分子相同,根据同分子分数大小和分母的关系比较。

  ②通分分母法:使所有分数的分母相同,根据同分母分数大小和分子的关系比较。

  ③基准数法:确定一个标准,使所有的分数都和它进行比较。

  ④分子和分母大小比较法:当分子和分母的差一定时,分子或分母越大的分数值越大。

  ⑤倍率比较法:当比较两个分子或分母同时变化时分数的大小,除了运用以上方法外,可以用同倍率的变化关系比较分数的大小。(具体运用见同倍率变化规律)

  ⑥转化比较方法:把所有分数转化成小数(求出分数的值)后进行比较。

  ⑦倍数比较法:用一个数除以另一个数,结果得数和1进行比较。

  ⑧大小比较法:用一个分数减去另一个分数,得出的数和0比较。

  ⑨倒数比较法:利用倒数比较大小,然后确定原数的大小。

  ⑩基准数比较法:确定一个基准数,每一个数与基准数比较。

  22.分数拆分

   

  23.完全平方数完全平方数特征:

  1.末位数字只能是:0、1、4、5、6、9;反之不成立。

  2.除以3余0或余1;反之不成立。

  3.除以4余0或余1;反之不成立。

  4.约数个数为奇数;反之成立。

  5.奇数的平方的十位数字为偶数;反之不成立。

  6.奇数平方个位数字是奇数;偶数平方个位数字是偶数。

  7.两个相临整数的平方之间不可能再有平方数。

  平方差公式:X2-Y2=(X-Y)(X+Y)

  完全平方和公式:(X+Y)2=X2+2XY+Y2

  完全平方差公式:(X-Y)2=X2-2XY+Y224.

  比和比例(五点名校命题必考知识点,小学各种竞赛中的命题热点)比:两个数相除又叫两个数的比。比号前面的数叫比的前项,比号后面的数叫比的后项。

  比值:比的前项除以后项的商,叫做比值。

  比的性质:比的前项和后项同时乘以或除以相同的数(零除外),比值不变。

  比例:表示两个比相等的式子叫做比例。a:b=c:d或比例的性质:两个外项积等于两个内项积(交叉相乘),ad=bc。

  正比例:若A扩大或缩小几倍,B也扩大或缩小几倍(AB的商不变时),则A与B成正比。

  反比例:若A扩大或缩小几倍,B也缩小或扩大几倍(AB的积不变时),则A与B成反比。

  比例尺:图上距离与实际距离的比叫做比例尺。

  按比例分配:把几个数按一定比例分成几份,叫按比例分配。

  25.综合行程(即时小学数学的难点,又是小学数学的重点,同时又是小学各种竞赛中的命题热点)

  基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系.

  基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间

  关键问题:确定运动过程中的位置和方向。

  相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)

  追及问题:追及时间=路程差÷速度差(写出其他公式)

  流水问题:顺水行程=(船速+水速)×顺水时间

  逆水行程=(船速-水速)×逆水时间

  顺水速度=船速+水速逆水速度=船速-水速

  静水速度=(顺水速度+逆水速度)÷2

  水速=(顺水速度-逆水速度)÷2

  流水问题:关键是确定物体所运动的速度,参照以上公式。

  过桥问题:关键是确定物体所运动的路程,参照以上公式。

  主要方法:画线段图法。行程问题六大解题方法:(1)公式法、(2)图解法、(3)比例法、(4)分段法、(5)方程法、(6)列表法。

  基本题型:已知路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中任意两个量,求第三个量。

  行程问题十三大类型:

  1.简单相遇追及问题

  2.多人相遇追及问题(一般为三人,把三人行程转化为二人行程来解决。)

  3.多次相遇追及问题(往返行程问题)

  4.变速变道问题

  5.火车过桥问题(过桥问题,错车问题)

  6.流水行船问题(自动扶梯问题)

  7.间隔发车问题

  8.接送问题

  9.时钟问题

  10.调头爬行问题

  11.环形跑道问题

  12.跑跑停停问题

  13.猎狗追兔问题

  26.工程问题基本公式:

  ①工作总量=工作效率×工作时间

  ②工作效率=工作总量÷工作时间

  ③工作时间=工作总量÷工作效率基本思路:①假设工作总量为“1”(和总工作量无关);②假设一个方便的数为工作总量(一般是它们完成工作总量所用时间的最小公倍数),利用上述三个基本关系,可以简单地表示出工作效率及工作时间.

  关键问题:确定工作量、工作时间、工作效率间的两两对应关系。经验简评:合久必分,分久必合。

 

首页 上一页 下一页 尾页

相关推荐

点击查看更多
重点初中
首页 导航