宁波
宁波奥数网

宁波站
奥数网

小学阶段的这些奥数知识你掌握了吗?(3)

宁波家长帮 2016-10-09 16:06:01

  13 、小升初奥数知识点(数的整除)

  一、基本概念和符号:

  1、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。

  2、常用符号:整除符号“|”,不能整除符号“ ”;因为符号“∵”,所以的符号“∴”;

  二、整除判断方法:

  1. 能被2、5整除:末位上的数字能被2、5整除。

  2. 能被4、25整除:末两位的数字所组成的数能被4、25整除。

  3. 能被8、125整除:末三位的数字所组成的数能被8、125整除。

  4. 能被3、9整除:各个数位上数字的和能被3、9整除。

  5. 能被7整除:

  ①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。

  ②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。

  6. 能被11整除:

  ①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。

  ②奇数位上的数字和与偶数位数的数字和的差能被11整除。

  ③逐次去掉最后一位数字并减去末位数字后能被11整除。

  7. 能被13整除:

  ①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。

  ②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。

  三、整除的性质:

  1. 如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。

  2. 如果a能被b整除,c是整数,那么a乘以c也能被b整除。

  3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。

  4. 如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。

  14 、小升初奥数知识点(余数及其应用)

  小升初奥数知识点(余数问题)

  余数的性质:

  ①余数小于除数。

  ②若a、b除以c的余数相同,则c|a-b或c|b-a。

  ③a与b的和除以c的余数等于a除以c的余数加上b除以c的余数的和除以c的余数。

  ④a与b的积除以c的余数等于a除以c的余数与b除以c的余数的积除以c的余数

  余数、同余与周期

  一、同余的定义:

  ①若两个整数a、b除以m的余数相同,则称a、b对于模m同余。

  ②已知三个整数a、b、m,如果m|a-b,就称a、b对于模m同余,记作a≡b(mod m),读作a同余于b模m。

  二、同余的性质:

  ①自身性:a≡a(mod m);

  ②对称性:若a≡b(mod m),则b≡a(mod m);

  ③传递性:若a≡b(mod m),b≡c(mod m),则a≡ c(mod m);

  ④和差性:若a≡b(mod m),c≡d(mod m),则a+c≡b+d(mod m),a-c≡b-d(mod m);

  ⑤相乘性:若a≡ b(mod m),c≡d(mod m),则a×c≡ b×d(mod m);

  ⑥乘方性:若a≡b(mod m),则an≡bn(mod m);

  ⑦同倍性:若a≡ b(mod m),整数c,则a×c≡ b×c(mod m×c);

  三、关于乘方的预备知识:

  ①若A=a×b,则MA=Ma×b=(Ma)b

  ②若B=c+d则MB=Mc+d=Mc×Md

  四、被3、9、11除后的余数特征:

  ①一个自然数M,n表示M的各个数位上数字的和,则M≡n(mod 9)或(mod 3);

  ②一个自然数M,X表示M的各个奇数位上数字的和,Y表示M的各个偶数数位上数字的和,则M≡Y-X或M≡11-(X-Y)(mod 11);

  五、费尔马小定理:如果p是质数(素数),a是自然数,且a不能被p整除,则ap-1≡1(mod p)。

  15、小升初奥数知识点(分数与百分数的应用)

  基本概念与性质:

  分数:把单位“1”平均分成几份,表示这样的一份或几份的数。

  分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

  分数单位:把单位“1”平均分成几份,表示这样一份的数。

  百分数:表示一个数是另一个数百分之几的数。

  常用方法:

  ① 向思维方法:从题目提供条件的反方向(或结果)进行思考。

  ② 对应思维方法:找出题目中具体的量与它所占的率的直接对应关系。

  ③转化思维方法:把一类应用题转化成另一类应用题进行解答。最常见的是转换成比例和转换成倍数关系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同一条件下的分率。常见的处理方法是确定不同的标准为一倍量。

  ④假设思维方法:为了解题的方便,可以把题目中不相等的量假设成相等或者假设某种情况成立,计算出相应的结果,然后再进行调整,求出最后结果。

  ⑤量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始终固定不变的。有以下三种情况:A、分量发生变化,总量不变。B、总量发生变化,但其中有的分量不变。C、总量和分量都发生变化,但分量之间的差量不变化。

  ⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化。

  ⑦同倍率法:总量和分量之间按照同分率变化的规律进行处理。

  ⑧浓度配比法:一般应用于总量和分量都发生变化的状况。

  16 、小升初奥数知识点(分数大小的比较)

  基本方法:

  ①通分分子法:使所有分数的分子相同,根据同分子分数大小和分母的关系比较。

  ②通分分母法:使所有分数的分母相同,根据同分母分数大小和分子的关系比较。

  ③基准数法:确定一个标准,使所有的分数都和它进行比较。

  ④分子和分母大小比较法:当分子和分母的差一定时,分子或分母越大的分数值越大。

  ⑤倍率比较法:当比较两个分子或分母同时变化时分数的大小,除了运用以上方法外,可以用同倍率的变化关系比较分数的大小。(具体运用见同倍率变化规律)

  ⑥转化比较方法:把所有分数转化成小数(求出分数的值)后进行比较。

  ⑦倍数比较法:用一个数除以另一个数,结果得数和1进行比较。

  ⑧大小比较法:用一个分数减去另一个分数,得出的数和0比较。

  ⑨倒数比较法:利用倒数比较大小,然后确定原数的大小。

  ⑩基准数比较法:确定一个基准数,每一个数与基准数比较

  17 、小升初奥数知识点(比和比例)

  比:两个数相除又叫两个数的比。比号前面的数叫比的前项,比号后面的数叫比的后项。

  比值:比的前项除以后项的商,叫做比值。

  比的性质:比的前项和后项同时乘以或除以相同的数(零除外),比值不变。

  比例:表示两个比相等的式子叫做比例。a:b=c:d

  比例的性质:两个外项积等于两个内项积(交叉相乘),ad=bc。

  正比例:若A扩大或缩小几倍,B也扩大或缩小几倍(AB的商不变时),则A与B成正比。

  反比例:若A扩大或缩小几倍,B也缩小或扩大几倍(AB的积不变时),则A与B成反比。

  比例尺:图上距离与实际距离的比叫做比例尺。

  按比例分配:把几个数按一定比例分成几份,叫按比例分配

  18 、小升初奥数知识点(综合行程问题)

  基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系.

  基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间

  关键问题:确定运动过程中的位置和方向。

  相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)

  追及问题:追及时间=路程差÷速度差(写出其他公式)

  流水问题:顺水行程=(船速+水速)×顺水时间

  逆水行程=(船速-水速)×逆水时间

  顺水速度=船速+水速

  逆水速度=船速-水速

  静水速度=(顺水速度+逆水速度)÷2

  水 速=(顺水速度-逆水速度)÷2

  流水问题:关键是确定物体所运动的速度,参照以上公式。

  过桥问题:关键是确定物体所运动的路程,参照以上公式。

  主要方法:画线段图法

  基本题型:已知路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中任意两个量,求第三个量。

点击下一页继续

首页 上一页 下一页 尾页

相关推荐

点击查看更多
重点初中
首页 导航