备战2013华杯赛专题训练——等差数列
华杯赛是宁波小升初中比较热门的奥数比赛,很多家长都会让孩子去报名参加。下面是宁波奥数网编辑整理的华杯赛专题训练题,大家可以看下。
1、下面是按规律排列的一串数,问其中的第1995项是多少?
解答:2、5、8、11、14、……。从规律看出:这是一个等差数列,且首项是2,公差是3,这样第1995项=2+3×(1995-1)=5984
2、在从1开始的自然数中,第100个不能被3除尽的数是多少?
解答:我们发现:1、2、3、4、5、6、7、……中,从1开始每三个数一组,每组前2个不能被3除尽,2个一组,100个就有100÷2=50组,每组3个数,共有50×3=150,那么第100个不能被3除尽的数就是150-1=149.
3、把1988表示成28个连续偶数的和,那么其中最大的那个偶数是多少?.
解答:28个偶数成14组,对称的2个数是一组,即最小数和最大数是一组,每组和为:1988÷14=142,最小数与最大数相差28-1=27个公差,即相差2×27=54,这样转化为和差问题,最大数为(142+54)÷2=98。
4、在大于1000的整数中,找出所有被34除后商与余数相等的数,那么这些数的和是多少?
解答:因为34×28+28=35×28=980<1000,所以只有以下几个数:
34×29+29=35×29
34×30+30=35×30
34×31+31=35×31
34×32+32=35×32
34×33+33=35×33
以上数的和为35×(29+30+31+32+33)=5425
5、盒子里装着分别写有1、2、3、……134、135的红色卡片各一张,从盒中任意摸出若干张卡片,并算出这若干张卡片上各数的和除以17的余数,再把这个余数写在另一张黄色的卡片上放回盒内,经过若干次这样的操作后,盒内还剩下两张红色卡片和一张黄色卡片,已知这两张红色的卡片上写的数分别是19和97,求那张黄色卡片上所写的数。
解答:因为每次若干个数,进行了若干次,所以比较难把握,不妨从整体考虑,之前先退到简单的情况分析:假设有2个数20和30,它们的和除以17得到黄卡片数为16,如果分开算分别为3和13,再把3和13求和除以17仍得黄卡片数16,也就是说不管几个数相加,总和除以17的余数不变,回到题目1+2+3+……+134+135=136×135÷2=9180,9180÷17=540,135个数的和除以17的余数为0,而19+97=116,116÷17=6……14,所以黄卡片的数是17-14=3。
6、下面的各算式是按规律排列的:
1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15,1+17,……,那么其中第多少个算式的结果是1992?
解答:先找出规律:每个式子由2个数相加,第一个数是1、2、3、4的循环,第二个数是从1开始的连续奇数。因为1992是偶数,2个加数中第二个一定是奇数,所以第一个必为奇数,所以是1或3,如果是1:那么第二个数为1992-1=1991,1991是第(1991+1)÷2=996项,而数字1始终是奇数项,两者不符,所以这个算式是3+1989=1992,是(1989+1)÷2=995个算式。