宁波
宁波奥数网

宁波站
奥数网

宁波小升初数学冲刺应用题训练及解析(二十二)

宁波奥数网整理 2012-04-11 17:42:48

  在小升初数学冲刺学习的过程中,应用题是考试复习的重点之一。为了让大家能够更好的备战2012年宁波小升初考试,宁波奥数网小编把数学冲刺应用题及详细解析整理出来,大家可以看下。

  211.快车与慢车分别从甲、乙两地同时开出,相向而行,经过5小时相遇.已知慢车从乙地到甲地用12.5小时,慢车到甲地停留半小时后返回,快车到乙地停留1小时后返回,那么两车从第一次相遇到第二次相遇共需多少时间?

  解:快车每小时行1/5-1/12.5=3/25。当慢车到达甲地并休息之后,快车行了12.5+0.5-1=12小时,此时快车和慢车相距2-3/25×12=14/25。所以还需要14/25÷1/5=2.8小时相遇。从第一次相遇到第二次相遇共用去13+2.8-5=10.8小时。

  212.某造纸厂在100天里共生产2000吨纸,开始阶段,每天只能生产10吨纸.中间阶段由于改进了技术,每天的产量提高了一倍.最后阶段由于购置了新设备,每天的产量又比中间阶段提高了一倍半.已知中间阶段生产天数的2倍比开始阶段多13天,那么最后阶段有几天?

  中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨,

  因为在100天里共生产2000吨,平均每天产量:2000÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3

  最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天

  中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨,

  因为在100天里共生产2000吨,平均每天产量:2000÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3

  最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天

  213.有一座山里有若干个大和尚和若干个小和尚,已知7个大和尚每天共吃41个馒头,29个小和尚每天共吃11个馒头,而平均每个和尚恰好每天吃一个馒头,那么在这座山里至少有几个和尚?

  大和尚:7x个,小和尚:29y个

  7x+29y=41x+11y

  x=9y/17

  y=17,x=9

  至少有7×9+29×17=556个和尚

  如果每人每天吃1个馒头,那么7个大和尚就会多出41-7=34个;29个小和尚就差29-11=18个馒头。由于34和18的最小公倍数是34×9或者17×18。所以至少有7×9+29×17=556人。

  214.某校毕业生共分9个班,每班人数相等.已知一班的男生比二、三班的女生总数多1;四、五、六班三个班的女生总数比七、八、九班三个班的男生总数多1,那么该校毕业生中男、女生人数的比是多少?

  解:前面三个班,女生人数相当于1个班的人数少1人,后面六个班,女生人数相当于3个班的人数多1。在9个班中女生人数刚好是1+3=4个班的人数,所以男女生人数比是4:5

  215.一自行车选手在相距950千米的甲、乙两地间训练.他从甲地出发,去时每90千米休息一次,到达乙地后休息一天,再沿原路返回.返回时,每100千米休息一次.他发现恰好有一个休息地点与去时的一个休息地点相同.问这个地方距离甲地有多远?

  去时距离甲地是90的倍数,即90,180,270千米……处

  返回时距离乙地是100的倍数,即距离甲地是950-100的倍数

  两者的交集是距离甲地450千米处

  把它看作一个相遇问题。

  950÷(100+90)=5

  5×90=450千米。

首页 上一页 下一页 尾页

相关推荐

点击查看更多
重点初中
首页 导航