宁波小升初数学冲刺应用题训练及解析(十四)(2)
136. 一辆公共汽车载了一些乘客从起点出发,在第一站下车的乘客是车上总数(含一名司机和两名售票员)的1/7,第二站下车的乘客是车上总人数的1/6,.......第六站下车的乘客是车上总人数的1/2,再开车是车上就剩下1名乘客了.已知途中没有人上车,问从起点出发时,车上有多少名乘客?
解: 最后剩下1+1+2=4人。那么车上总人数是
4÷(1-1/2)÷(1-1/3)÷……÷(1-1/6)÷(1-1/7)=28人
那么,起点时车上乘客有28-3=25人。
137. 有三块草地,面积分别是4亩、8亩、10亩.草地上的草一样厚,而且长得一样快,第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周.问第三块草地可供50头牛吃几周?
解法一:设每头牛每周吃1份草。
第一块草地4亩可供24头牛吃6周,
说明每亩可供24÷4=6头牛吃6周。
第二块草地8亩可共36头牛吃12周,
说明每亩草地可供36÷8=9/2头牛吃12周。
所以,每亩草地每周要长(9/2×12-6×6)÷(12-6)=3份
所以,每亩原有草6×6-6×3=18份。
因此,第三块草地原有草18×10=180份,每周长3×10=30份。
所以,第三块草地可供50头牛吃180÷(50-30)=9周
解法二:设每头牛每周吃1份草。我们把题目进行变形。
有一块1亩的草地,可供24÷4=6头牛吃6周,供36÷8=9/2头牛吃12周,那么可供50÷10=5头牛吃多少周呢?
所以,每周草会长(9/2×12-6×6)÷(12-6)=3份,
原有草(6-3)×6=18份,
那么就够5头牛吃18÷(5-3)=9周
138. B地在A,C两地之间.甲从B地到A地去,出发后1小时,乙从B地出发到C地,乙出发后1小时,丙突然想起要通知甲、乙一件重要的事情,于是从B地出发骑车去追赶甲和乙.已知甲和乙的速度相等,丙的速度是甲、乙速度的3倍,为使丙从B地出发到最终赶回B地所用的时间最少,丙应当先追甲再返回追乙,还是先追乙再返回追甲?
我的思考如下:
如果先追乙返回,时间是1÷(3-1)×2=1小时,
再追甲后返回,时间是3÷(3-1)×2=3小时,
共用去3+1=4小时
如果先追甲返回,时间是2÷(3-1)×2=2小时,
再追乙后返回,时间是3÷(3-1)×2=3小时,
共用去2+3=5小时
所以先追乙时间最少。故先追更后出发的。
139. 一把小刀售价3元.如果小明买了这把小刀,那么小明与小强的钱数之比是2:5;如果小强买了这把小刀,那么两人的钱数之比是8:13.小明原来有多少元钱?
解法一:
小明买,小明剩下的钱是两人剩下的钱的2÷(2+5)=2/7
如果小强买,那么小明的钱是两人剩下的钱的8÷(8+13)=8/21
所以小明剩下的钱占他自己原来的钱的2/7÷8/21=3/4。
所以小明原来的钱有3÷(1-3/4)=12元。
解法二:
如果小明买,
剩下(8+13)÷(2+5)×2=6份,
用掉8-6=2份。
所以小明有3÷2×8=12元。
140. 环形跑道周长是500米,甲、乙两人从起点按顺时针方向同时出发.甲每分钟跑120米,乙每分钟跑100米,两人都是每跑200米停下来休息1分钟,那么甲第一次追上乙需要多少分钟?
解:对于这个题目,我有两个理解。
第一,甲乙出发后第一次停留在同一个地方。
那么就有当甲行200米之后,再出发的时间是200÷120+1>2分钟。
这时,乙用2分钟,也行了100×2=200米的地方。
意思是说,乙行了2分钟,就和在休息的甲在200米的地方停留。
第二,甲比乙多行500米而追上。
因为行完之后,甲比乙多行500米,
那么就说明多休息500÷200=2……100,即2次。
即甲追乙的路程是500+100×2=700米
要追700米,甲需要走700÷(120-100)=35分
甲行35分钟需要休息35×120÷200-1=20分
所以共需35+20=55分
编辑推荐: