用信息学中的语言完成鸡兔同笼问题(6)
合肥奥数网整理
2011-09-27 19:14:06
例18 有50位同学前往参观,乘电车前往每人1.2元,乘小巴前往每人4元,乘地下铁路前往每人6元.这些同学共用了车费110元,问其中乘小巴的同学有多少位?
解:由于总钱数110元是整数,小巴和地铁票也都是整数,因此乘电车前往的人数一定是5的整数倍.
如果有30人乘电车,
110-1.2×30=74(元).
还余下50-30=20(人)都乘小巴钱也不够.说明假设的乘电车人数少了.
如果有40人乘电车
110-1.2×40=62(元).
还余下50-40=10(人)都乘地下铁路前往,钱还有多(62>6×10).说明假设的乘电车人数又多了.30至40之间,只有35是5的整数倍.
现在又可以转化成“鸡兔同笼”了:
总头数 50-35=15,
总脚数 110-1.2×35=68.
因此,乘小巴前往的人数是
(6×15-68)÷(6-4)=11.
答:乘小巴前往的同学有11位.
在“三”转化为“二”时,例13、例14、例16是一种类型.利用题目中数量比例关系,把两种东西合并组成一种.例17、例18是另一种类型.充分利用所求个数是整数,以及总量的限制,其中某一个数只能是几个数值.对几个数值逐一考虑是否符合题目的条件.确定了一个个数,也就变成“二”的问题了.在小学算术的范围内,学习这两种类型已足够了.更复杂的问题,只能借助中学的三元一次方程组等代数方法去求解.
习题三
1.有100枚硬币,把其中2分硬币全换成等值的5分硬币,硬币总数变成79个,然后又把其中的1分硬币换成等值的5分硬币,硬币总数变成63个.求原有2分及5分硬币共值多少钱?
2.“京剧公演”共出售750张票得22200元.甲票每张60元,乙票每张30元,丙票每张18元.其中丙票张数是乙票张数的2倍.问其中甲票有多少张?
3.小明参加数学竞赛,共做20题得67分.已知做一题得5分,不答得2分,做错一题倒扣3分.又知道他做错的题和没答的题一样多.问小明共做对几题?
4.1分、2分和5分硬币共100枚,价值2元,如果其中2分硬币的价值比1分硬币的价值多13分.问三种硬币各多少枚?
注:此题没有学过分数运算的同学可以不做.
5.甲地与乙地相距24千米.某人从甲地到乙地往返行走.上坡速度每小时4千米,走平路速度每小时5千米,下坡速度每小时6千米.去时行走了4小时50分,回来时用了5小时.问从甲地到乙地,上坡、平路、下坡各多少千米?
6.某学校有12间宿舍,住着80个学生.宿舍的大小有三种:大的住8个学生,不大不小的住7个学生,小的住5人.其中不大不小的宿舍最多,问这样的宿舍有几间?
