小升初奥数题资料(二)(7)
思路导航:
从图中可以看出,要求乙车每小时行多少千米,关键要知道乙车已经行了多少路程和行这段路程所用的时间。
解:(1)甲车一共行多少小时?1.5+3=4.5(小时)
(2)甲车一共行多少千米路程?25×4.5=112.5(千米)
(3)乙车一共行多少千米路程?217.5-112.5=105(千米)
(4)乙车每小时行多少千米? (105-15)÷3=30(千米)
答:乙车每小时行30千米。
例3. 兄妹二人同时从家里出发到学校去,家与学校相距1400米。哥哥骑自行车每分钟行200米,妹妹每分钟走80米。哥哥刚到学校就立即返回来在途中与妹妹相遇。从出发到相遇,妹妹走了几分钟?相遇处离学校有多少米?
思路导航:
从图中可以看出,哥与妹妹相遇时他们所走的路程的和相当于从家到学校距离的2倍。因此本题可以转化为"哥哥妹妹相距2800米,两人同时出发,相向而行,哥哥每分钟行200米,妹妹每分钟行80米,经过几分钟相遇?"的问题,解答就容易了。
解:(1)从家到学校的距离的2倍:1400×2=2800(米)
(2)从出发到相遇所需的时间:2800÷(200+80)=10(分)
(3)相遇处到学校的距离:1400-80×10=600(米)
答:从出发到相遇,妹妹走了10分钟,相遇处离学校有600米。
二、巩固训练
1. 两城市相距328千米,甲、乙两人骑自行车同时从两城出发,相向而行。甲每小时行28千米,乙每小时行22千米,乙在中途修车耽误1小时,然后继续行驶,与甲相遇,求出发到相遇经过多少时间?
分析:如果乙在中途不停车,那么甲、乙两人从出发到相遇共行路程的和:328+22×1=350(千米),两车的速度和:28+22=50(千米/小时),然后根据相遇问题"路程和÷速度和=相遇时间"得 350÷50=7(小时)
解:(328+22×1)÷(28+22)
=350÷50
=7(小时)
解法2:
(328-22×1)÷(28+22)
=300÷50
=6(小时)
6+1=7(小时)
答:从出发到相遇经过了7小时。
2. 快车和慢车同时从甲乙两地相对开出,已知快车每小时行40千米,经过3小时快车已过中点12千米与慢车相遇,慢车每小时行多少千米?
分析:
从图中可知:快车3小时行的路程40×3=120千米,比全程的一半多12千米,全程的一半是120-12=108千米。而慢车3小时行的路程比全程的一半还少12千米,所以慢车3小时行的路程是108-12=96千米,由此可以求出慢车的速度。
解:①甲乙两地路程的一半:40×3-12=108(千米)
②慢车3小时行的路程:108-12=96(千米)
③慢车的速度:96÷3=32(千米)
答:慢车每小时行32千米。
3. 小华和小明同时从甲、乙两城相向而行,在离甲城85千米处相遇,到达对方城市后立即以原速沿原路返回,又在离甲城35千米处相遇,两城相距多少千米?
分析:
从图上可以看出,小华和小明两人第一次相遇时,行了一个全程,小华行了85千米。当小华和小明第二次相遇时,共行了3个全程,这时小华共行了3个85千米,如果再加上35千米,相当于小华行了2个全程,甲乙两地全长也就可以求出来了。
解:(1)甲乙出发到第二次相遇时,小华共行了多少千米? 85×3=255(千米)
(2)甲乙两城相距多少千米?( 255+35)÷2=290÷2=145(千米)
答:两城相距145千米。
三、拓展提升
1. 客车和货车同时从甲、乙两地相对开出,客车每小时行54千米,货车每小时行48千米,两车相遇后又以原来的速度继续前进,客车到达乙站后立即返回,货车到达甲站后也立即返回,两车再次相遇时,客车比货车多行216千米。求甲乙两站相距多少千米?
分析
如图,从出发到第二次相遇时,客车和货车共行3个全程,在这段时间里客车一共比货车多行216千米,客车每小时比货车快54-48=6千米,这样可以求出行3个全程的时间为216÷6=36小时,由此可求出行一个全程时间:36÷3=12小时,因而可以求出甲乙两站的距离。
解:①从出发到第二次是两车行驶的时间:216÷(54-48)=36(小时)
②从出发到第一次相遇所用的时间:36÷3=12(小时)
③甲乙两站的距离:(54+48)×12=1224(千米)
答:求甲乙两站相距1224千米。
2. 甲、乙、丙三辆车同时从A地出发到B地去,甲、乙两车速度分别为每小时60千米和48千米,有一辆迎面开来的卡车分别在他们出发后6小时、7小时、8小时先后与甲、乙、丙三车相遇。求丙车的速度。
分析:
解答的关键是求出卡车的速度,从图上明显看出,甲车6小时的行程与乙车7小时的行程差正好是卡车的速度。再根据速度和、相遇时间和路程三者之间的关系,求出丙车速度。
解:(1)卡车的速度:( 60×6-48×7)÷(7-6)=24÷1=24(千米)
(2)AB两地之间的距离:(60+24)×6=504(千米)
(3)丙车与卡车的速度和:504÷8=64(千米)
(4)丙车的速度:64-24=40(千米/小时)
答:丙车的速度每小时40千米。
3. 两列火车从某站相背而行,甲车每小时行58千米,先开出2小时后,车以每小时62千米才开出,乙车开出5小时后,两列火车相距多少千米?
② 火车过桥
过桥问题也是行程问题的一种。首先要弄清列车通过一座桥是指从车头上桥到车尾离桥。列车过桥的
总路程是桥长加车长,这是解决过桥问题的关键。过桥问题也要用到一般行程问题的基本数量关系:
过桥问题的一般数量关系是:
因为: 过桥的路程 = 桥长 + 车长
所以有:通过桥的时间 =(桥长 + 车长)÷车速
车速 = (桥长 + 车长)÷过桥时间
公式的变形:
桥长 = 车速×过桥时间 - 车长
车长 = 车速×过桥时间 - 桥长
后三个都是根据第二个关系式逆推出的。
火车通过隧道的问题和过桥问题的道理是一样的,也要通过上面的数量关系来解决。
一、例题与方法指导
例1. 一列客车经过南京长江大桥,大桥长6700米,这列客车长100米,火车每分钟行400米,这列客车经过长江大桥需要多少分钟?
思路导航:
从火车头上桥,到火车尾离桥,这之间是火车通过这座大桥的过程,也就是过桥的路程是桥长 + 车长。通过"过桥的路程"和"车速"就可以求出火车过桥的时间。
(1)过桥路程:6700 + 100 = 6800(米)
(2)过桥时间:6800÷400 = 17(分)
答:这列客车通过南京长江大桥需要17分钟。
例2. 一列火车长160米,全车通过440米的桥需要30秒钟,这列火车每秒行多少米?
思路导航:
要想求火车过桥的速度,就要知道"过桥的路程"和过桥的时间。
(1)过桥的路程:160 + 440 = 600(米)
(2)火车的速度:600÷30 = 20(米)
答:这列火车每秒行20米。
例3. 某列火车通过360米的第一个隧道用了24秒钟,接着通过第二个长216米的隧道用了16秒钟,求这列火车的长度?
思路导航:
火车通过第一个隧道比通过第二个隧道多用了8秒,为什么多用8秒呢?原因是第一个隧道比第二个隧道长360-216 = 144(米),这144米正好和8秒相对应,这样可以求出车速。火车24秒行进的路程包括隧道长和火车长,减去已知的隧道长,就是火车长。
(1)第一个隧道比第二个长多少米?
360-216 = 144(米)
(2)火车通过第一个隧道比第二个多用几秒?
24-16 = 8(秒)
(3)火车每秒行多少米?
144÷8 = 18(米)
(4)火车24秒行多少米?
18×24 = 432(米)
(5)火车长多少米?
432-360 = 72(米)
答:这列火车长72米。
二、巩固训练
1. 某列火车通过342米的隧道用了23秒,接着通过234米的隧道用了17秒,这列火车与另一列长88米,速度为每秒22米的列车错车而过,问需要几秒钟?
思路导航:
通过前两个已知条件,我们可以求出火车的车速和火车的车身长。
(342-234)÷(23-17)= 18(米)……车速
18×23-342 = 72(米) ……………………车身长
两车错车是从车头相遇开始,直到两车尾离开才是错车结束,两车错车的总路程是两个车身之和,两车是做相向运动,所以,根据"路程÷速度和 = 相遇时间",可以求出两车错车需要的时间。
(72 + 88)÷(18 + 22)= 4(秒)
答:两车错车而过,需要4秒钟。
2. 一列火车全长265米,每秒行驶25米,全车要通过一座985米长的大桥,问需要多少秒钟?
(265 + 985)÷25 = 50(秒)
答:需要50秒钟。
3. 一列长50米的火车,穿过200米长的山洞用了25秒钟,这列火车每秒行多少米?
(200 + 50)÷25 = 10(米)
答:这列火车每秒行10米。
三、拓展提升
1. 一列长240米的火车以每秒30米的速度过一座桥,从车头上桥到车尾离桥用了1分钟,求这座桥长多
少米?
1分 = 60秒
30×60-240 = 1560(米)
答:这座桥长1560米。
2. 一列货车全长240米,每秒行驶15米,全车连续通过一条隧道和一座桥,共用40秒钟,桥长150米,
问这条隧道长多少米?
15×40-240-150 = 210(米)
答:这条隧道长210米。
3. 一列火车开过一座长1200米的大桥,需要75秒钟,火车以同样的速度开过路旁的电线杆只需15秒钟,求火车长多少米?
1200÷(75-15)= 20(米)
20×15 = 300(米)
答:火车长300米。
4. 在上下行轨道上,两列火车相对开来,一列火车长182米,每秒行18米,另一列火车每秒行17米,两列火车错车而过用了10秒钟,求另一列火车长多少米?
(18 + 17)×10-182 = 168(米)
答:另一列火车长168米。
(六) 植树问题
只要我们稍加留意,都会看到在马路两旁一般都种有树木。细心观察,这些树木的间距一般都是等距离种植的。路长、间距、棵数之间存在着确定的关系,我们把这种关系叫做"植树问题"。而植树问题,一般又可分为封闭型的和不封闭型的(开放型的)。
封闭型的和不封闭型的植树问题,区别在于间隔数(段数)与棵数的关系:
