小升初数学应用题精选讲解(3)
16—30题参考答案
16、解:快车和慢车的速度比=1:3/5=5:3
相遇时快车行了全程的5/8
慢车行了全程的3/8
那么全程=80/(5/8-3/8)=320千米
17、解:最短距离是已经相遇,最长距离是还未相遇
速度和=100+120=220米/分
2小时=120分
最短距离=220×120-150=26400-150=26250米
最长距离=220×120+150=26400+150=26550米
18、解:
原来速度=180/4=45千米/小时
实际速度=45+5=50千米/小时
实际用的时间=180/50=3.6小时
提前4-3.6=0.4小时
19、算术法:
相遇后的时间=12×3/7=36/7小时
每小时快12千米,乙多行12×36/7=432/7千米
相遇时甲比乙多行1/7
那么全程=(432/7)/(1/7)=432千米
20、解:乙的速度=52×1.5=78千米/小时
开出325/(52+78)=325/130=2.5相遇
21、解:乙行全程5/8用的时间=(5/8)/(1/10)=25/4小时
AB距离=(80×25/4)/(1-1/6)=500×6/5=600千米
22、解:甲乙速度比=40:45=8:9
甲乙路程比=8:9
相遇时乙行了全程的9/17
那么两地距离=20/(9/17-1/2)=20/(1/34)=680千米
23、解:把全程看作单位1
甲乙的速度比=60:80=3:4
E点的位置距离A是全程的3/7
二次相遇一共是3个全程
乙休息的14分钟,甲走了60×14=840米
乙在第一次相遇之后,走的路程是3/7×2=6/7
那么甲走的路程是6/7×3/4=9/14
实际甲走了4/7×2=8/7
那么乙休息的时候甲走了8/7-9/14=1/2
那么全程=840/(1/2)=1680米
24、解:相遇时未行的路程比为4:5
那么已行的路程比为5:4
时间比等于路程比的反比
甲乙路程比=5:4
时间比为4:5
那么乙行完全程需要10×5/4=12.5小时
那么AB距离=72×12.5=900千米
25、解:甲乙的相遇时的路程比=速度比=4:5
那么相遇时,甲距离目的地还有全程的5/9
所以AB距离=4×2/(5/9)=72/5=14.4千米
26.、解:客车和货车的速度比=60:48=5:4
将全部路程看作单位1
那么第一次的相遇点在距离甲地1×5/(5+4)=5/9处
二次相遇是三个全程
那么第二次相遇点距离乙地1×3×5/9-1=5/3-1=2/3处
也就是距离甲地1-2/3=1/3处
所以甲乙距离=120/(5/9-1/3)=120/(2/9)=540千米
27、解:两车每小时共行全程的1/5
那么3小时行全程的1/5×3=3/5
所以全程=(180+210)/(1-3/5)=390/(2/5)=975千米
28、解:将全部的路程看作单位1
因为时间一样,路程比就是速度比
甲乙路程比=速度比=4:5
乙的速度快,乙到达A点,甲行了1×4/5=4/5
此时乙提速1/3,那么甲乙速度比=4:5×(1+1/3)=3:5
甲走了1-4/5=1/5,那么乙走了(1/5)/(3/5)=1/3
此时甲提速,速度比由3:5变为3(1+1/4):5=3:4
甲乙距离1-1/3=2/3
相遇时乙一共走了1/3+(2/3)×4/(3+4)=1/3+8/21=5/7
也就是距离A地5/7的全程
第一次相遇时的相遇点距离A地4/9全程
那么AB距离=34/(5/7-4/9)=34/(17/63)=126千米
29、解:设此时是5点a分
分针每分钟走1格,那么时针每分钟走5/60=1/12格
根据题意
a-30=5-a/12
13/12a=35
a=420/13分≈32分18秒
此时是5点32分18秒
此处的30和5表示30格和5格,即钟面上的1格
看作特殊的行程问题
30、解:顺流速度1/3,逆水速度=1/4.5=2/9
流水速度=(1/3-2/9)/2=1/18
需要1/(1/18)=18小时