五年级奥数几何知识 之 长方体和正方体
1、 一个零件形状大小如下图:算一算,它的体积是多少立方厘米,表面积是多少平方厘米?
【思路导航】
(1)可以把零件沿虚线分成两部分来求它的体积,左边的长方体体积是10×4×2=80(立方厘米),右边的长方体的体积是10×(6-2)×2=80(立方厘米),整个零件的体积是80+80=160(立方厘米)。
10×4×2+10×(6-2)×2=160(立方厘米)
(2)求这个零件的表面积,看起来比较复杂,其实,朝上的两个面的面积和正好与朝下的一个面的面积相等;朝右的两个面的面积和正好与朝左的一个面的面积相等。因此,此零件的表面积就是:
(10×6+10×4+4×2×2)×2=232(平方厘米)
?想一想:你还能用别的方法来计算它的体积吗?
练习(1)一个长5厘米、宽1厘米、高3厘米的长方体,被切去一块后(如下图),剩下部分的表面积和体积各是多少?
练习(2)把一根长2米的长方体木料锯成1米长的两段,表面积增加2平方分米,求这根木料原来的体积。
练习(3)有一个长8厘米,宽1厘米,高3厘米的长方体木块,在它的左右两角各切掉一个正方体(如下图),求切掉正方体后的表面积和体积各是多少?
2、 有一个长方体形状的零件。中间挖去一个正方体的孔(如下图)。你能算出它的体积和表面积吗?(单位:厘米)
【思路导航】
(1)先求出长方体的体积,8×5×6=240(立方厘米),由于挖去一个孔,所以体积减少2×2×2=8(立方厘米),这个零件的体积是240-8=232(立方厘米)
(2)长方体完整的表面积是(8×5+8×6+5×6)×2=236(平方厘米),但由于挖去一个孔,它的表面积减少了一个(2×2)平方厘米的面积,同时又增加了凹进去的5个(2×2)平方厘米的面,因此,这个零件的表面积是236+(2×2)×4=252(平方厘米).
练习(1)有一个形状如下图的零件,求它的体积和表面积。(单位:厘米)
练习(2)有一个棱长是4厘米的正方体,从它的一个顶点处挖去一个棱长是1厘米的正方体后,剩下的物体的体积和表面积各是多少?
3、 一个正方体和一个长方体拼成一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了50平方米。原来正方体的表面积是多少平方厘米?
【思路导航】
一个正方体和一个长放体拼成的新的长方体,其表面积比原来的长方体增加了4块正方形的面积,每块正方形的面积是50÷4=12.5(平方厘米)。正方体有6个这样的面,所以,原来正方体的表面积是12.5×6=75(平方厘米)。
50÷4×6=75(平方厘米)
练习(1)把两个完全一样的长方体木块粘成一个大长方体,这个大长方体的表面积比原来两个长方体的表面积的和减少46平方厘米,而长是原来的2倍。如果拼成的长方体的长是24厘米,那么它的体积是多少立方厘米?
练习(2)一根长80厘米,宽和高都是12厘米的长方体钢材,从钢材的一端锯下一个最大的正方体后,它的表面积减少了多少平方厘米?
4、 一个长方体,前面和上面的面积和是209平方厘米,这个长方体的长、宽、高以厘米为单位的数都是质数。这个长方体的体积和表面积各是多少?
【思路导航】
长方体的前面与上面的面积和是长×宽+宽×高=长×(高+宽),由于长方体的长、宽、高用厘米为单位的数都是质数,所以有209=11×19=11×(17+2),即长、宽、高分别为11、17、2厘米。知道了长、宽、高求体积和表面积就容易了。
209=11×19=11×(17+2)
11×17×2=374 (立方厘米)
(11×17+11×2+17×2)×2=486(平方厘米)
练习(1)一个长方体,它的前面和上面的面积和是110平方厘米,且长、宽、高都是质数,那么这个长方体的体积是多少?
练习(2)一个长方体的长、宽、高是三个连续偶数,体积是960立方厘米,求它的表面积。
练习(3)一个长方体和一个正方体的棱长和相等,已知长方体的长、宽、高分别是6分米、4分米、2分米,求正方体的体积。