太原
太原奥数网

太原站
奥数网

小学数学知识点:代数初步知识

太原奥数网整理 2011-08-18 20:27:42

  一、用字母表示数

  1.  用字母表示数的意义和作用

  用字母表示数,可以把数量关系简明的表达出来,同时也可以表示运算的结果。

  2.用字母表示常见的数量关系、运算定律和性质、几何形体的计算公式

  (1)常见的数量关系

  路程用s表示,速度v用表示,时间用t表示,三者之间的关系:

  s=vt

  v=s/t

  t=s/v

  总价用a表示,单价用b表示,数量用c表示,三者之间的关系:

  a=bc

  b=a/c

  c=a/b

  (2)运算定律和性质

  加法交换律:a+b=b+a

  加法结合律:(a+b)+c=a+(b+c)

  乘法交换律:ab=ba

  乘法结合律:(ab)c=a(bc)

  乘法分配律:(a+b)c=ac+bc

  减法的性质:a-(b+c) =a-b-c

  (3)用字母表示几何形体的公式

  长方形的长用a表示,宽用b表示,周长用c表示,面积用s表示。

  c=2(a+b)

  s=ab

  正方形的边长a用表示,周长用c表示,面积用s表示。

  c=4a

  s=a2

  平行四边形的底a用表示,高用h表示,面积用s表示。

  s=ah

  三角形的底用a表示,高用h表示,面积用s表示。

  s=ah/2

  梯形的上底用a表示,下底b用表示,高用h表示,中位线用m表示,面积用s表示。

  s=(a+b)h/2

  s=mh

  圆的半径用r表示,直径用d表示,周长用c表示,面积用s表示。

  c=∏d=2∏r

  s=∏ r2

  扇形的半径用r表示,n表示圆心角的度数,面积用s表示。

  s=∏ nr2/360

  长方体的长用a表示,宽用b表示,高用h表示,表面积用s表示,体积用v表示。

  v=sh

  s=2(ab+ah+bh)

  v=abh

  正方体的棱长用a表示,底面周长c用表示,底面积用s表示, 体积用v表示.

  s=6a2

  v=a3

  圆柱的高用h表示,底面周长用c表示,底面积用s表示, 体积用v表示.

  s侧=ch

  s表=s侧+2s底

  v=sh

  圆锥的高用h表示,底面积用s表示, 体积用v表示.

  v=sh/3

  3. 用字母表示数的写法

  数字和字母、字母和字母相乘时,乘号可以记作“.”,或者省略不写,数字要写在字母的前面。

  当“1”与任何字母相乘时,“1”省略不写。

  在一个问题中,同一个字母表示同一个量,不同的量用不同的字母表示。

  用含有字母的式子表示问题的答案时,除数一般写成分母,如果式子中有加号或者减号,要先用括号把含字母的式子括起来,再在括号后面写上单位的名称。

  4.将数值代入式子求值

  把具体的数代入式子求值时,要注意书写格式:先写出字母等于几,然后写出原式,再把数代入式子求值。字母表示的是数,后面不写单位名称。

  同一个式子,式子中所含字母取不同的数值,那么所求出的式子的值也不相同。

  二、简易方程

  (一)方程和方程的解

  1.方程:含有未知数的等式叫做方程。

  注意方程是等式,又含有未知数,两者缺一不可。

  方程和算术式不同。算术式是一个式子,它由运算符号和已知数组成,它表示未知数。方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时 ,方程才成立 。

  2 .方程的解:使方程左右两边相等的未知数的值,叫做方程的解。

  三、解方程

  解方程,求方程的解的过程叫做解方程。

  四、列方程解应用题

  1 .列方程解应用题的意义

  用方程式去解答应用题求得应用题的未知量的方法。

  2 .列方程解答应用题的步骤

  弄清题意,确定未知数并用x表示;

  找出题中的数量之间的相等关系;

  列方程,解方程;

  检查或验算,写出答案。

  3.列方程解应用题的方法

  综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种 思维过程,其思考方向是从已知到未知。

  分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。

  4.列方程解应用题的范围

  小学范围内常用方程解的应用题:

  a一般应用题;

  b和倍、差倍问题;

  c几何形体的周长、面积、体积计算;

  d 分数、百分数应用题;

  e 比和比例应用题。

  五  比和比例

  1.比的意义和性质

  (1) 比的意义

  两个数相除又叫做两个数的比。

  “:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

  同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

  比值通常用分数表示,也可以用小数表示,有时也可能是整数。

  比的后项不能是零。

  根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。

  (2)比的性质

  比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

  (3)  求比值和化简比

  求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。

  根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。

  (4)比例尺

  图上距离:实际距离=比例尺

  要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。

  线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。

  (5)按比例分配

  在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。

  方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。

  2. 比例的意义和性质

  (1) 比例的意义

  表示两个比相等的式子叫做比例。

  组成比例的四个数,叫做比例的项。

  两端的两项叫做外项,中间的两项叫做内项。

  (2)比例的性质

  在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。

  (3)解比例

  根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。求比例中的未知项,叫做解比例。

  3. 正比例和反比例

  (1) 成正比例的量

  两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

  用字母表示y/x=k(一定)

  (2)成反比例的量

  两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。

  用字母表示x×y=k(一定)

 

返回:小升初数学知识点梳理汇总篇

相关推荐

点击查看更多
重点初中
首页 导航