上海
上海奥数网

上海站
奥数网

中环杯/小机灵杯难题:整除问题

家长帮资讯 2014-12-08 15:09:13

  导语:中环杯/小机灵杯各年级难题——整除问题(四年级),下面是详细例题分析。

  1、一个整数的末尾两位数字组成的数被4(或25)整除,则这个整数必定被4(或25)整除。

  2、一个整数的末尾三位数字组成的数被8(或125)整除,则这个整数必定被8(或125)整除。

  3、如果一个整数奇数位上的数字和与偶数位上的数字和的差被11整除,则这个数必定被11整除。


  例1、在下面的数中,哪些能被4整除?哪些能被8整除?哪些能被9整除?

  234,789,7756,8865,3728,8064。

  解:能被4整除的数有7756,3728,8064;能被8整除的数有3728,8064;能被9整除的数有234,8865,8064。

  例2、在四位数56□2中,被盖住的十位数分别等于几时,这个四位数分别能被9,8,4整除?

  解:如果56□2能被9整除,那么5+6+□+2=13+□应能被9整除,所以当十位数是5,即四位数是5652时能被9整除;

  如果56□2能被8整除,那么6□2应能被8整除,所以当十位数是3或7,即四位数是5632或5672时能被8整除;

  如果56□2能被4整除,那么□2应能被4整除,所以当十位数是1,3,5,7,9,即四位数是5612,5632,5652,5672,5692时能被4整除。

  到现在为止,我们已经学过能被2,3,5,4,8,9整除的数的特征。根据整除的性质3,我们可以把判断整除的范围进一步扩大。例如,判断一个数能否 被6整除,因为6=2×3,2与3互质,所以如果这个数既能被2整除又能被3整除,那么根据整除的性质3,可判定这个数能被6整除。同理,判断一个数能否 被12整除,只需判断这个数能否同时被3和4整除;判断一个数能否被72整除,只需判断这个数能否同时被8和9整除;如此等等。

  例3、从0,2,5,7四个数字中任选三个,组成能同时被2,5,3整除的数,并将这些数从小到大进行排列。

  解:因为组成的三位数能同时被2,5整除,所以个位数字为0。根据三位数能被3整除的特征,数字和2+7+0与5+7+0都能被3整除,因此所求的这些数为270,570,720,750。

  例4、五位数能被72整除,问:A与B各代表什么数字?

  分析与解:已知能被72整除。因为72=8×9,8和9是互质数,所以既能被8整除,又能被9整除。根据能被8整除的数的特征,要求能被8整除,由此 可确定B=6。再根据能被9整除的数的特征,的各位数字之和为A+3+2+9+B=A+3-f-2+9+6=A+20,因为l≤A≤9,所以 21≤A+20≤29。在这个范围内只有27能被9整除,所以A=7。

  解答例4的关键是把72分解成8×9,再分别根据能被8和9整除的数的特征去讨论B和A所代表的数字。在解题顺序上,应先确定B所代表的数字,因为B代表的数字不受A的取值大小的影响,一旦B代表的数字确定下来,A所代表的数字就容易确定了。

  例5、六位数是6的倍数,这样的六位数有多少个?

  分析与解:因为6=2×3,且2与3互质,所以这个整数既能被2整除又能被3整除。由六位数能被2整除,推知A可取0,2,4,6,8这五个值。再由六位数能被3整除,推知3+A+B+A+B+A=3+3A+2B。

  能被3整除,故2B能被3整除。B可取0,3,6,9这4个值。由于B可以取4个值,A可以取5个值,题目没有要求A≠B,所以符合条件的六位数共有5×4=20(个)。

  例6、要使六位数能被36整除,而且所得的商最小,问A,B,C各代表什么数字?

  分析与解:因为36=4×9,且4与9互质,所以这个六位数应既能被4整除又能被9整除。六位数能被4整除,就要能被4整除,因此C可取1,3,5,7,9。

  要使所得的商最小,就要使这个六位数尽可能小。因此首先是A尽量小,其次是B尽量小,最后是C尽量小。先试取A=0。六位数的各位数字之和为 12+B+C。它应能被9整除,因此B+C=6或B+C=15。因为B,C应尽量小,所以B+C=6,而C只能取1,3,5,7,9,所以要使尽可能小, 应取B=1,C=5。当A=0,B=1,C=5时,六位数能被36整除,而且所得商最小,为150156÷36=4171。

 

  相关推荐:[点击下方标题查看]

  中环杯/小机灵杯难题:归一问题

  中环杯/小机灵杯难题:质数合数

相关推荐

点击查看更多
重点初中
首页 导航