小升初数学应用题综合训练系列(24)
小升初数学:应用题综合训练24
231. 在一个边长
232. 有15位同学,每位同学都有一个编号,依次是1至15号.1号的同学写了一个五位数,2号的同学说:"这个数能被2整除",3号的同学说:"这个数能被3整除";4号的同学说:"这个数能被4整除";……15号的同学说:"这个数能被15整除".1号的同学一一作了验算,只有编号连续的两位同学说的不对,其他同学都说得对.(1)说得不对的两位同学的编号个是多少?(2)这个五位数最小是多少?
很容易知道2、3、4、5、6、7没有说错。10、12、14、15也没有说错。
因此错了的就是8和9。
因此这个五位数最小是11×13×14×15×2=60060
233. 甲、乙两人从周长为
要使两人在同一边行走,甲乙相距必须小于一条边,并且甲要迈过顶点。甲追乙1600÷4=
此时甲乙相距400×2-104×(50-46)=
234. 某公共汽车线路上共有15个站(包括起点和终点站).在每个站上车的人中,恰好在以后各站分别下去一个.要使行驶过程中每位乘客均有座位,车上至少备有多少个座位供乘客使用?
第一站有14×1=14人,第二站有13×2=26人,
第三站有12×3=36人,第四站有11×4=44人,
第五站有10×5=50人,第六站有9×6=54人,
第七站有8×7=56人,第八站有7×8=56人,
第九站有6×9=54人,第10站有5×10=50人,
……
所以应该准备56个座位。
235. 一船逆水而上,船上某人于大桥下面将水壶遗失被水冲走,当船回头时,时间已过20分钟.后来在大桥下游距离大桥
船回头时,水壶和船之间的距离相当于,船逆水20分钟+水壶行20分钟(水流20分钟)=船静水20分钟的路程。
追及时,船追及水壶的速度差相当于,船顺水速度-水壶的速度(水流速度)=船静水速度
因此追上水壶的时间是20分钟。即水壶20×2=40分钟,被冲走了
因此水流的速度是每小时2÷40/60=
236. 从公路上的材料工地运送电线竿到
总共需要送20÷3≈7个往返。先送远的,每次3根,就要少行路程。这个总行程计算如下:
按照19、16、13、10、7、4、1段
所以共行500×14+50×140=
237. 王师傅要加工一批零件,若每小时多加工12个零件,则所用的时间比原计划少1/9;若每小时少加工16个,则所用的时间比原来多3/5小时.这批零件有多少个?
工作时间少1/9,说明工作效率提高了1÷(1-1/9)-1=1/8,
说明原来计划每小时加工12÷1/8=96个。
每小时如果少加工16个,工作效率就是原来的(96-16)÷96=5/6,
时间就要增加1÷5/6-1=1/5。
所以原计划的工作时间是3/5÷1/5=3小时。
因此这批零件96×3=288个。
238. 甲、乙两人各加工一定数量的零件.若甲每小时加工24个,乙每小时加工12个,那么乙完成任务后,甲还剩下22个零件;若甲每小时加工12个,乙每小时加工24个,那么乙完成任务后,甲还剩下130个零件.问甲、乙各共要加工多少个零件?
如果后来也按照原来的比例来做,甲每小时24×(24÷12)=48个,乙24个来做,那么最后甲还是剩下22个零件。
现在多剩下130-22=108个零件,是因为每小时少加工48-12=36个引起的,所以后来加工了108÷36=3小时。
因此甲要加工12×3+130=166个,乙要加工24×3=72个。
239. 甲、乙两个修路队,共同修
如果两队都完成了3/4,那么就还剩下3600×(1-3/4)=
说明乙的4/5-3/4=1/20是900-780-40=
因此乙队的任务是80÷1/20=