青岛
青岛奥数网

青岛站
奥数网

第十一届华罗庚金杯少年数学邀请赛初赛真题答案

青岛奥数网整理 2012-03-27 13:56:13

  二、A组填空题

  7、35

  解:根据加法规则,“第”=1。“届+赛”=6或“届+赛”=16。若“届+赛”=6,只能是“届”、

  “赛”分别等于2或4,此时“一十杯”=10只能“一”、“杯”分别为3或7。此时“十+华”=9,“十”、“华”分别只能取(1,8),(2,7),(3,6),(4,5),但1,2,3,4均已被取,不能再取。所以,“届+赛”=6填不出来,只能是“届+赛”=16,“十+华”+1=10,也就是“一 + 杯”=9 同时“十 + 华” =9。所以它们可以分别在(3,6),(4,5)两组中取值。

  因此“第、十、一、届、华、杯、赛”所代表的7个数字的和等于1+9+9+16=35。

  8、23

  解:有三角板的学生共50-28=22(人),其中女生22-14=8(人),那么有直尺的女生有31-8=23(人)。

  9、226.08.

  解:如图,一个长为12厘米的直棒状细吸管放在玻璃杯内,另一端沿吸管最多能露出4厘米,表明直圆柱的高CB=12-4=8(厘米);另一端沿吸管最少可露出2厘米,表明直圆柱的轴截面矩形的对角线长为AC=12-2=10(厘米)。由直角三角形中“勾6、股8、弦10”的常识,可知圆柱底面圆的直径是6厘米,半径为3厘米。因此,这个玻璃杯的容积为(立方厘米)。

  以a是一个5+2×45+3×2=101(位)数。

  从1开始的连续奇数被9除的余数依次为1,3,5,7,0,2,4,6,8,1,3,5,7,0,2,4,6,8,…,从1开始,每周期为9个数1,3,5,7,0,2,4,6,8的循环。因为(1+3+5+7+0+2+4+6+8)被9除余数为0,从1-89恰为5个周期,所以这个101位数a被9除的余数为1+3+5+7+0+2+4被9除的余数,等于4。

  解法2:一个自然数被9除的余数和这个自然数所有数字之和被9除的余数相同,利用这条性质,a=13579111315171921……9799101103中13579的数字和被9除的余数是7,而111315171921……9799所有数字之和被9除的余数是0,101103的数字和被9除的余数是6。所以,a被9除的余数是(7+6)被9除的余数,是4。

  13、27;37

  解:对前一种情况,可取红、黑色的1、2、3、4、5、6、7、8、9、10、11、12、13点各1张,共13×2=26(张),那么再取一张牌,必定和其中某一张牌点数相同,于是就有2张牌点数和颜色都相同。这是最杯的情况,因此,至少要取27张牌,必能保证有2张牌点数、颜色都相同。

  对后一种情况,有以下的搭配:

  (1,2,3)、(4,5,6)、(7,8,9)、(10,11,12),13。

  因而对涂阴影的9个数,四种花色的牌都取,这样可以取到(4×2+1)×4=36(张)牌,其中没有3张牌的点数是相邻的。

  现在考虑取37张牌,极端情况下,这37张牌,有4张是13,则至少要有33张牌取自(1,2,3)、(4,5,6)、(7,8,9)、(10,11,12)四个抽屉,根据抽屉原则,必有9个数来自其中一个抽屉,这个抽屉中就一定有3张牌的点数相邻的。因此,至少要取37张牌。

  14、95;155。

  解:第1问,以面积大小数正方形,记最小的正方形面积为1;面积为1的正方形的个数:36;面积为2的正方形的个数:4;面积为4的正方形的个数:25;面积为9的正方形的个数:16;面积为16的正方形的个数:9;面积为25的正方形的个数4;面积为36的正方形的个数:1。所以,共有36+4+25+16+9+4+1=95(个)正方形。

  第2问。方法1:以图中的最小的直角三角形为计数基本单位数三角形:

 

真题链接:》》》

第十一届华罗庚金杯少年数学邀请赛初赛真题

 

编辑推荐:》》》

第二届华罗庚金杯少年数学邀请赛决赛一试真题答案

第二届华罗庚金杯少年数学邀请赛初赛真题

第十三届“华罗庚金杯”少年数学邀请赛答案

第一届华罗庚金杯”少年数学邀请赛一试真题

第十六届华杯赛决赛真题答案(七)

第十五届华杯赛(小学组)决赛试题答案(五)

相关推荐

点击查看更多
重点初中
首页 导航