宁波
宁波奥数网

宁波站
奥数网

备战2013华杯赛专题训练——智巧趣题(3)

宁波奥数网整理 2012-08-16 17:23:36

  10、把123,124,125三个数分别写在图10-2所示的A,B,C三个小圆圈中,然后按下面的规则修改这三个数。第一步,把B中的数改成A中的数与B中的数之和;第二步,把C中的数改成B中(已改过)的数与C中的数之和;第三步,把A中的数改成C中(已改过)的数与A中的数之和;再回到第一步,循环做下去。如果在某一步做完之后,A,B,C中的数都变成了奇数,则停止运算。为了尽可能多运算几步,那么124应填在哪个圆圈中?

  11、若干个同样的盒子排成一排,小明把五十多个同样的棋子分装在盒中,其中只有一个盒子没有装棋子,然后他外出了。小光从每个有棋子的盒子里各拿一个棋子放在空盒内,再把盒子重新排了一下。小明回来仔细查看了一番,没有发现有人动过这些盒子和棋子。问共有多少个盒子?

  解答:原来有个空的,说明现在也有个空的;现在空的说明原来这盒有1个,当然现在也必须有个盒子有1个;现在盒中有1个,说明原来是2个,当然现在也必须有个盒子有2个;……考虑50多,所以有0+1+2+3+4+5+6+7+8+9+10=55共11个盒子。

  12、如图10-3,圆周上顺序排列着1,2,3,……,12这12个数。我们规定:把圆周上某相邻4个数的顺序颠倒过来,称为一次变换,例如1,2,3,4可变为4,3,2,1,而11,12,1,2可变为2,1,12,11。问能否经过有限变换,将12个数的顺序变为如图10-4所示的9,1,2,3,……,8,10,11,12?

  解答:从两个图可以看出,10、11、12没有变化,我们不妨这样排列:9、8、7、6、5、4、3、2、1变为8、7、6、5、4、3、2、1、9;这样只要9次就行。

  13、在一块黑板上将123456789重复50次得到450位数123456789123456789……。先删去这个数中从左至右数所有位于奇数位上的数字,再删去所得的数中所有位于奇数位上的数字,……,依此类推。那么,最后删去的是哪个数字?

  解答:容易发现,每次留下的应该是2^n位上的数字;2^8=256,2^9=512>450,所以最后一个数字应该是第256位上的数;256/9=28......4,所以,最后删去的是4。

  14、把1,2,3,4,……,1986,1987这1987个数均匀排成一个大圆圈,从1开始数:隔过1划掉2,3,隔过4划掉5,6,这样每隔一个数划掉两个数,转圈划下去,……。问:最后剩下哪个数?

  15、如图10-5,在一个圆周上放了1枚黑色的和1990枚白色的围棋子。一个同学进行这样的操作:从黑子开始,按顺时针方向,每隔1枚,取走1枚。当他取到黑子时,圆周上还剩下多少枚白子?

  解答:将黑子右边的第一个编号1,顺时针排下去,到黑子就是第1991号;每隔1枚,取走1枚,即第一圈取所有偶数编号的,最后一颗取走的为1990号,即黑子左边的一个,到黑子时正好跳过黑子;这样第一圈共取走(1991-1)/2=995个,留下了996个;对剩下的棋子重新按上述方法(即黑子右边为1号)编号,第2圈就变成了全部取走奇数号,因为此时黑子为996号,又正好留下;并且可以知道,只要留下的是偶数枚,黑子总能跳过;992/2=498,第三圈留下498枚;498/2=249,第四圈留下249枚;249为奇数,因此第5圈结束将正好取走黑子,那么,当黑子被取走时,还留下(249-1)/2=124枚。

编辑推荐:

第十七届华杯赛笔试考试注意事项

华杯赛知识点模块考点分析汇总

2012华杯赛备考分三个阶段进行

首页 上一页 下一页 尾页

相关推荐

点击查看更多
重点初中
首页 导航