宁波小升初数学冲刺应用题训练及解析(十九)(2)
185. 某体育用品商店进了一批篮球,分一极品和二极品.二极品的进价比一极品便宜20%,按优质优价的原则,一极品按20%的利润定价,二极品按15%的利润定价.一极品篮球比二极品篮球每个贵14元.问一极品篮球的进价是每个多少元?
解:把一级品的进价看作单位"1",那么二级品的进价就是1-20%=80%。
一级品的定价是进价的1+20%=120%,二级品的定价是80%×(1+15%)=92%。所以一级品的进价是14÷(120%-92%)=50元。
一极品进价看作"1",二极品的进价:1-20%=0.8
一极品按20%的利润定价:1×(1+20%)=1.2
二极品按15%的利润定价:0.8×(1+15%)=0.92
一极品篮球的进价是:14÷(1.2-0.92)=50元
186. 某商品按定价出售,每个可获得利润50元.如果按定价的80%出售10件,与按定价每个减价30元出售12件所获得的利润一样多,这种商品每件定价多少元?
解:按定价每个减价30元出售12件获利12×(50-30)=240元。所以按照按定价的80%出售10件也可以获得240元的利润,那么每件获得的利润是240÷10=24元。价格就降了50-24=26元。所以每件商品的定价是26÷(1-80%)=130元。
187. 从家里骑摩托车到火车站赶乘火车.如果每小时行30千米,那么早到15分钟;如果每小时行20千米,则迟到5分钟.如果打算提前5分钟到,那么摩托车的速度应是多少?
解:每小时行30千米,按照规定时间,就要多行30×15/60=7.5千米。每小时行20千米,按照规定时间,就要少行20×5/60=5/3千米。所以规定时间就是(7.5+5/3)÷(30-20)=11/12小时。距离是30×(11/12-15/60)=20千米。所以要提前5分钟到达,摩托车的速度是每小时行20÷(11/12-5/60)=24千米
15分钟=1/4小时
5分钟=1/12小时
每小时行30千米,早到15分钟,可以多行:30×1/4=7.5千米
每小时行20千米,迟到5分钟. 少行:20×1/12=5/3千米
盈亏问题
时间:(7.5+5/3)÷(30-20)=11/12小时
总行程是:20×(11/12+1/12)=20千米
提前5分钟到,那么摩托车的速度应是:
20÷(11/12-1/12)=24千米/小时.
188. 有甲、乙两块含铜量不同的合金,甲块重6千克,乙块重4千克.现在从甲、乙两块合金上各切下重量相等的一部分.将甲块上切下的部分与乙块的剩余部分一起熔炼,再将乙块上切下的部分与甲块剩余部分一起熔炼,得到的两块新合金的含铜量相等.问从每一块上切下的部分的重量是多少千克?
解:这个含铜量要理解成百分比,而不能理解成重量。
解法一:
假设甲块6千克全部是铜,乙块都不是铜,那么新合金,每块的含铜量就是6÷(6+4)=60%,甲块切下部分就是乙块的60%,所以切下部分是4×60%=2.4千克。
解法二:
假设甲块6千克都不是铜,乙块全部是铜,那么新合金每块的含铜量就是4÷(6+4)=40%,乙块切下部分就是甲块的40%,所以切下部分是6×40%=2.4千克。
解法三:
不假设,新合金,甲块留下6÷(6+4)=60%,甲块剩下6×60%=3.6千克。所以,切下部分是6-3.6=2.4千克。
解法四:
也不假设,新合金,乙块留下4÷(6+4)=40%,乙块剩下4×40%=1.6千克。所以,切下部分是4-1.6=2.4千克。