宁波
宁波奥数网

宁波站
奥数网

宁波小升初数学冲刺应用题训练及解析(三)(2)

宁波奥数网整理 2012-04-11 13:12:30

  26. 甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米.乙总共跑了多少千米?

  乙多跑的20分钟,跑了20/60×11=11/3千米,

  结果甲共追上了11/3-2=5/3千米,

  需要5/3÷(13-11)=5/6小时,

  乙共行了11×(5/6+20/60)=77/6千米

  27. 有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米.容器A中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米.容器的高度是多少厘米?

  这个题目要注意是"底面积"而不是"底面半径",与高的关系!

  容器A中的水全部倒入容器B,

  容器B的水深就应该占容器高的(6×6)÷(8×8)=9/16

  所以容器高2÷(7/8-9/16)=6.4厘米

  28. 有104吨的货物,用载重为9吨的汽车运送.已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成.

  用进一法解决问题,次数要整数才行。

  需要跑的次数是104÷9=11次……5吨,所以要跑11+1=12次

  实际跑的次数是104÷(9+1)=10次……4吨,故10+1=11次

  往返一次1小时,所以提前(12-11)×1=1小时。

  29. 师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?

  这个题目有点像鸡兔同笼问题:

  如果两人工作效率都提高24%,那么两人共加工零件225×(24%+1)=279个

  说明徒弟提高45%-24%=21%的工作效率就可以加工300-279=21个

  所以徒弟第一天加工21÷21%=100个,那么徒弟第二天加工了100×(1+45%)=145个

  那么师傅加工了300-145=155个零件。

  30. 奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.去时用了4天,回来时用了3天,问学校距离百花山多少千米?

  利用等差数列来解答:

  行程每天增加2千米我是这样理解的,第一天按照原来的速度行使,从第二天开始,都比前一天多行2千米。所以形成了一个等差数列。

  由于前面四天和后面三天行的路程相等。

  去时,四天相当于原速行四天还要多2+4+6=12千米

  返回时,三天相当于原速行三天还要多8+10+12=30千米

  所以原速每天行30-12=18千米,可以求出学校距离百花山18×3+30=84千米

  (1/6)/6=1/36;

  徒弟合作时的工效为:(1/36)*6/5=1/30;

  师傅合作时的工效为:(2/5)/6-1/30=1/30;

  师傅独做时的工效为:(1/30)*10/11=1/33;

  师傅独做需要:1/(1/33)=33天。

编辑推荐:

2012小升初数学知识点基本概念大汇总

宁波小升初数学分数应用题归类及解析

2012年小升初数学知识点专题整理

首页 上一页 下一页 尾页

相关推荐

点击查看更多
重点初中
首页 导航