全国站
奥数网

全国站
奥数网

五年级数学天天练试题及答案2022.4.12(数字问题)(2)

网络来源 2022-03-09 15:45:03


  【答案】

  解:首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。

  解题:1+2+3+4+5+6+7+8+9=45;45能被9整除

  依次类推:1~1999这些数的个位上的数字之和可以被9整除

  10~19,20~29……90~99这些数中十位上的数字都出现了10次,那么十位上的数字之和就是10+20+30+……+90=450 它有能被9整除

  同样的道理,100~900 百位上的数字之和为4500 同样被9整除

  也就是说1~999这些连续的自然数的各个位上的数字之和可以被9整除;

  同样的道理:1000~1999这些连续的自然数中百位、十位、个位 上的数字之和可以被9整除(这里千位上的“1”还没考虑,同时这里我们少200020012002200320042005

  从1000~1999千位上一共999个“1”的和是999,也能整除;

  200020012002200320042005的各位数字之和是27,也刚好整除。

  最后答案为余数为0。

  点击查看更多:五年级数学天天练试题及答案

  奥数网提醒:

  单元试题、各科教案、奥数练习题

  尽在“奥数网”微信公众号

首页 上一页 下一页 尾页

相关推荐

点击查看更多
首页 导航