2019年小学数学知识点之行程问题:火车过桥
2019年小学数学知识点之行程问题:火车过桥
一、什么是过桥问题?
火车过桥问题是路程问题的一种,也有路程、速度与时间之间的数量关系,同时还涉及车长、桥长等问题。基本数量关系是火车速度×时间=车长+桥长
二、关于火车过桥问题的三种题型:
(1)基本题型:这类问题需要注意两点:火车车长记入总路程;重点是车尾:火车与人擦肩而过,即车尾离人而去。
如:火车通过一条长1140米的桥梁用了50秒,火车穿过1980米的隧道用了80秒,求这列火车的速度和车长。(过桥问题)
一列火车通过800米的桥需55秒,通过500米的隧道需40秒。问该列车与另一列长384、每秒钟行18米的列车迎面错车需要多少秒钟?(火车相遇)
(2)错车或者超车:看哪辆车经过,路程和或差就是哪辆车的车长
如:快、慢两列火车相向而行,快车的车长是50米,慢车的车长是80米,快车的速度是慢车的2倍,如果坐在慢车的人见快车驶过窗口的时间是5秒,那么,坐在快车的人见慢车驶过窗口的时间是多少?
(3)综合题:用车长求出速度;虽然不知道总路程,但是可以求出某两个时刻间两人或车之间的路程关系
如:铁路旁有一条小路,一列长为110米的火车以每小时30千米的速度向南驶去,8点时追上向南行走的一名军人,15秒后离他而去,8点6分迎面遇到一个向北走的农民,12秒后离开这个农民。问军人与农民何时相遇?
两列火车错车用的时间是:
(A的车身长+B的车身长)÷(A车的速度+B车的速度)
两列火车超车用的时间是:
(A的车身长+B的车身长)÷(A车的速度-B车的速度)
(注:A车追B车)
火车过桥问题,可用下面的关系式求火车通过的时间:
(列车长度+桥的长度)÷列车速度
火车通过两座桥,或通过一座桥,隧道,车头走过的长度是:
桥长+火车长或隧道长+火车长
其中火车长一样,比较长和隧道长,再比较所用的时间的差,就又求出火车的速度以及车身长。
人坐在列车上往窗外看另一列车,相当人在一定时间内走过一座桥。
