物理小知识:磁场无处不在(2)
让我们来做一个思想实验,如果磁单极子存在,并且你将它与一个普通的电荷配对,那二者就会开始旋转。这种旋转实际上与距离无关;无论二者相距多远,它们都会旋转。但狄拉克知道,角动量(呈圆圈形式的动量,正如电荷和磁单极子互相旋转的情况)是量子化的——我们宇宙中的角动量是离散值。一切皆是如此,包括这一对电荷和磁单极子。
于是,狄拉克意识到,如果角动量是量子化的,那么这些粒子上的电荷也必须是量子化的。而由于这种作用与距离无关,因此如果整个宇宙中存在磁单极子的话,它就会引起电荷的量子化,这就是“狄拉克量子化条件”。物理学家的实验发现,电荷量的基本单位为基本电荷,这与磁单极子的存在相符合,但至今仍未证实磁单极子的存在。
磁是狭义相对论的关键
詹姆斯·麦克斯韦发现的电和磁之间的联系并不简单,他意识到,二者其实是同一个硬币——电磁学——的两面。电场的改变可以产生磁场,反之亦然。更重要的是,他指出光现象其实就是电和磁相互扰动时产生的。
麦克斯韦将光与电磁学理论进行定量联系的创举被认为是19世纪数学物理最伟大的成就之一,也深刻影响了后来的物理学家,其中就包括爱因斯坦。爱因斯坦将麦克斯韦的工作更进了一步,他意识到电、磁和运动之间存在联系。让我们从单个电荷及其电场开始,当你跑动经过它的时候会发生什么?
从你的角度来看,电荷似乎才处于运动之中。那么,运动中的电荷会做什么?没错,它们会产生磁场。因此,不仅电场和磁场是同一个硬币的两面,而且你可以通过运动的方式,使二者发生转换。这也意味着,不同的观察者会看到不同的景象:静止的观察者可能会看到一个电场,而更具移动性的观察者会发现由同一来源产生的磁场。
正是这种思路促使爱因斯坦提出了狭义相对论——现代科学的基石。对此,我们应该首先向磁场表达谢意。
