2019年人教版六年级数学下册第二单元《圆柱与圆锥》导学案(3)
(3)通过观察讨论,学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,V=sh)
2.学生讨论:如果知道圆柱底面的半径r和高h,圆柱的体积公式还可以写成: V=πr2h
3.分组讨论完成例6.
(1)出示例6,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?(应先知道杯子的容积)
(2)指名口答,讲解订正。
例6:①杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)
②杯子的容积:50.24×10=502.4(cm3)=502.4(ml)
答:502.4大于498,所以这个杯子能装下这袋奶。
4.课堂小结,学生谈收获。
课堂检测:
1.学校建了两个同样大小的圆柱形花坛。花坛的地面内直径是3米,高是0.8米,如果里面填土的高度是0.5米,两个花坛中共需要填土多少方?
2.一个圆柱的体积是80立方厘米,底面积是16平方米。它的高是多少厘米?
板书设计:
圆柱的体积
例5:圆柱的体积=底面积×高V=sh或V=πr2h
例6:①杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)
②杯子的容积:50.24×10=502.4(cm3)=502.4(ml)
答:502.4大于498,所以这个杯子能装下这袋奶。
导学反思:
圆锥的认识
导学目标
1.认识圆锥,圆锥的高和侧面,掌握圆锥的特征,会看圆锥的平面图,会正确测量圆锥的高,能根据实验材料正确制作圆锥。
2.通过动手制作圆锥和测量圆锥的高,培养学生的动手操作能力和一定的空间想象能力。
3.培养学生的自主探索意识,激发学生强烈的求知欲望。
导学重难点:
教学重点:掌握圆锥的特征。
教学难点:正确理解圆锥的组成。
导学准备:圆锥图片 圆锥学具
导学过程:
预习学案:
1、圆柱体积的计算公式是什么?
2、圆柱的特征是什么?
导学案:
(一)小组交流汇报预习情况
(二)共同探究
1.圆锥的认识
(1)观察教科书第23页图片,它们有什么共同特点?
(2)让学生拿着圆锥模型观察,说出自己观察的结果(圆锥有一个曲面,一个顶点和一个面是圆的)
(3)圆锥有一个顶点,它的底面是一个圆、(在图上标出顶点,底面及其圆心O)
(4)圆锥有一个曲面,圆锥的这个曲面叫做侧面。(在图上标出侧面)
(5)让学生看着教具,指出:从圆锥的顶点到底面圆心的距离叫做高。
2.测量圆锥的高。
小组合作:(1)先把圆锥的底面放平;
(2)用一块平板水平地放在圆锥的顶点上面;
(3)竖直地量出平板和底面之间的距离。
3. 教学圆锥侧面的展开图
(1)学生猜想圆锥的侧面展开后会是什么图形呢?
(2)学生实验:得出圆锥的侧面展开后是一个扇形。
4.虚拟的圆锥
(1)先让学生猜测:一个长方形通过旋转,可以形成一个圆柱。那么将三角形制片绕着一条直角边旋转,会形成什么形状?
(2)通过操作,使学生发现转动出来的是圆锥,并从旋转的角度认识圆锥。
5.课堂小结。
课堂检测:
1.用附页2的图样,做一个圆锥,量出它的底面直径和高。
2.练习四:第1、2题。
板书设计:
圆锥的认识
圆锥的特征:底面是圆,侧面是一个曲面,展开是一个扇形
一个顶点一条高
导学反思:
圆锥的体积
导学目标:
1.通过分小组倒水实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。
2.借助已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。
3.通过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。
导学重难点:
教学重点:掌握圆锥体积的计算公式。
教学难点:正确探索出圆锥体积和圆柱体积之间的关系。
导学准备:等底等高的圆柱和圆锥模型
导学过程:
预习学案:
1、圆锥有什么特征?
2、圆柱体积的计算公式是什么?
导学案:
(一)小组交流汇报预习情况
(二)共同探究
1.教学圆锥体积的计算公式。
(1)学生做试验,探究圆锥和圆柱体积之间的关系。
用等底等高的圆柱和圆锥做实验,看看它们之间的体积有什么关系?”
(2)用倒水或倒沙子的方法试一试。先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?(学生做好记录,发现倒3次正好把圆柱倒满。)
(3)通过试验,等底等高的圆锥、圆柱的体积有什么关系?你能用字母表示出它们的关系吗?(学生分组讨论)
(4)圆锥的体积公式:
圆锥的体积=1/3×圆柱的体积=1/3×底面积×高
字母公式:V=1/3Sh
2.学生尝试完成例3
(1)出示例3,指名读题,要求沙堆的体积需要已知哪些条件?
(2)学生尝试完成。
(3)集体讲解订正。
沙堆底面积:4÷2=2(米)3.14×2×2=12.56(平方米)
沙堆的体积:1/3×12.56×1.2=5.024(立方米)
答:这堆沙子大约有5.024立方米。
3.课堂小结。
课堂检测:
1.一个圆锥形的零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?
2.一个圆柱的体积是75.36立方米,与它等底等高的圆锥的体积是( )。
3.一个圆锥的体积是141.3立方厘米,与它等底等高的圆柱的体积是( )。
板书设计:
圆锥的体积
圆锥的体积=1/3×圆柱的体积=1/3×底面积×高
字母公式:V=1/3Sh
例3:沙堆底面积:4÷2=2(米)3.14×2×2=12.56(平方米)
沙堆的体积:1/3×12.56×1.2=5.024(立方米)
答:这堆沙子大约有5.024立方米。
导学反思:
