《孙子兵法》中的中国剩余定理
奥数网
2010-06-29 15:29:00
在我国古代算书《孙子算经》中有这样一个问题:"今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?"意思是,"一个数除以3余2,除以5余3,除以7余2.求适合这个条件的最小数."这个问题称为"孙子问题".关于孙子问题的一般解法,国际上称为"中国剩余定理".
实际上,上面的问题我们可以这样来想:
分别写出除数3、5、7的两两公倍数.如下表:
我们在第一组数中选出合乎"除以7余2"的较小数--30;
在第二组数中选出合乎"除以5余3"的较小数--63;
在第三组数中选出合乎"除以3余2"的较小数--35.
根据和的整除性,可知30+63+35=128一定是一个同时合乎"被3除余2,被5除余3,被7除余2"的数(为什么?),但是不一定是最小的.要得到合乎条件的最小数,只要从中减去3、5、7的最小公倍数的若干倍,使得差数小于这个最小公倍数就是了.
3、5、7的最小公倍数是3×5×7=105,因此,由于前面的经验二,可知
128÷105=1……余23.
这个余数23就是要求的合乎条件的最小数.
有意义的是,虽然孙老先生的解法也是从对上表的思索得到的,但他的解法更具有一般性.亲爱的读者,你能猜想到孙子的一般解法吗?