杂题之数阵图练习4
奥数网
2009-12-28 14:39:50
将九个数填入左下图的九个空格中,使得任一行、任一列以及两条
证明:因为每行的三数之和都等于k,共有三行,所以九个数之和等于3k。如右上图所示,经过中心方格的有四条虚线,每条虚线上的三个数之和都等于k,四条虚线上的所有数之和等于4k,其中只有中心方格中的数是“重叠数”,九个数各被计算一次后,它又被重复计算了三次。所以有
九数之和+中心方格中的数×3=4k,
3k+中心方格中的数×3=4k,
注意:例4中对九个数及定数k都没有特殊要求。这个结论对求解3×3方格中的数阵问题很实用。
在3×3的方格中,如果要求填入九个互不相同的质数,要求任一行、任一列以及两条对角线上的三个数之和都相等,那么这样填好的图称为三阶质数幻方。