全国站
奥数网

全国站
奥数网

关于π的历史

数学资源库 2008-02-14 10:08:49

    圆的周长与直径之比是一个常数,人们称之为圆周率。通常用希腊字母 来表示。1706年,英国人琼斯首次创用 代表圆周率。他的符号并未立刻被采用,以后,欧拉予以提倡,才渐渐推广开来。现在 已成为圆周率的专用符号, 的研究,在一定程度上反映这个地区或时代的数学水平,它的历史是饶有趣味的。
    在古代,实际上长期使用 =3这个数值,巴比伦、印度、中国都是如此。到公元前2世纪,中国的《周髀算经》里已有周三径一的记载。东汉的数学家又将 值改为 (约为3.16)。直正使圆周率计算建立在科学的基础上,首先应归功于阿基米德。他专门写了一篇论文《圆的度量》,用几何方法证明了圆周率与圆直径之比小于 而大于 。这是第一次在科学中创用上、下界来确定近似值。第一次用正确方法计算 值的,是魏晋时期的刘徽,在公元263年,他首创了用圆的内接正多边形的面积来逼近圆面积的方法,算得 值为3.14。我国称这种方法为割圆术。直到1200年后,西方人才找到了类似的方法。后人为纪念刘徽的贡献,将3.14称为徽率。
    公元460年,南朝的祖冲之利用刘徽的割圆术,把 值算到小点后第七位3.1415926,这个具有七位小数的圆周率在当时是世界首次。祖冲之还找到了两个分数: 和 ,用分数来代替 ,极大地简化了计算,这种思想比西方也早一千多年。
  祖冲之的圆周率,保持了一千多年的世界记录。终于在1596年,由荷兰数学家卢道夫打破了。他把 值推到小数点后第15位小数,最后推到第35位。为了纪念他这项成就,人们在他1610年去世后的墓碑上,刻上:3.14159265358979323846264338327950288这个数,从此也把它称为“卢道夫数”。
    之后,西方数学家计算 的工作,有了飞速的进展。1948年1月,费格森与雷思奇合作,算出808位小数的 值。电子计算机问世后, 的人工计算宣告结束。20世纪50年代,人们借助计算机算得了10万位小数的 ,70年代又突破这个记录,算到了150万位。到90年代初,用新的计算方法,算到的 值已到4.8亿位。 的计算经历了几千年的历史,它的每一次重大进步,都标志着技术和算法的革新。

相关推荐

点击查看更多
首页 导航