重庆
重庆奥数网

重庆站
奥数网

奥数难题:特殊数题2

奥数网编辑整理 2011-11-23 11:44:01

  (12)85×99

  两位数乘以9、99、999、…在被乘数的后面添上和乘数中9的个数一样多的0、再减去被乘数。

  原式=8500-85=8415

 

  不难看出这类题的积:

  最高位上的两位数(或一位数),是被乘数与1的差;

  最低位上的两位数,是100与被乘数的差;

  中间数字是9,其个数是乘数中9的个数与2的差。

  证明:设任意两位数的个位数字为b、十位数字为a(a≠0),则

 

  如果被乘数的个位数是1,例如

  31×999

  在999前面添30为30999,再减去30,结果为30969。

  71×9999=709999-70=709929。

  这是因为任何一个末位为1的两位自然数都可表示为(10a+1)的形式,由9组成的自然数可表示为(10n-1)的形式,其积为

 

  (13)1÷19

  这是一道颇为繁复的计算题。

  原式=0.052631578947368421。

  根据“如果被除数不变,除数扩大(或缩小)若干倍,商反而缩小(或扩大)相同倍”和“商不变”性质,可很方便算出结果。

  原式转化为0.1÷1.9,把1.9看作2,计算程序:

  (1)先用0.1÷2=0.05。

  (2)把商向右移动一位,写到被除数里,继续除

 

 

  如此除到循环为止。

 

 

 

 

 

  仔细分析这个算式:

  加号前面的0.05是0.1÷2的商,后面的0.05×0.1÷1.9中0.05×0.1=0.005,就是把商向右移动一位写到被除数里,除以1.9。这样我们又可把除数看作2继续除,依此类推。

  除数末位是9,都可用此法计算。

  例如1÷29,用0.1÷3计算。

  1÷399,用0.1÷40计算。

 

 

 

相关推荐

点击查看更多
重点初中
首页 导航