名校小升初真题汇总之逻辑推理篇
1(首师附中考题)
【解】单循环制说明每个人都要赛5盘,这样A 就跟所有人下过了,再看E,他只下过1盘,这意味着他只和A下过,再看B 下过4盘,可见他除了没跟E下过,跟其他人都下过;再看D 下过2,可见肯定是跟A,B下的,再看C,下过3盘,可见他不能跟E,D下,所以只能跟A,B,F下,所以F总共下了3盘。
2(三帆中学考题)
【解】甲得3分,而且只出现一盘平局,说明甲一胜一平;乙2分,说明乙一胜一负;丙1分,说明一平一负。这样我们发现甲平丙,甲胜乙,乙胜丙。
3(西城实验考题)
【解】 天数 对阵 剩余对阵
第一天 B---D A、C、E、F
第二天 C---E A、B、D、F
第三天 D---F A、B、C、E
第四天 B---C A、D、E、F
第五天 A---? ?
从中我们可以发现D已经和B、C对阵了,这样第二天剩下的对阵只能是A---D、B---F;又C已经和E、B对阵了,这样第三天剩下的对阵只能是C---A、B---E;这样B就已经和C、D、E、F都对阵了,只差第五天和A对阵了,所以第五天A---B;再看C已经和A、B、E对阵了,第一天剩下的对阵只能是C---F、A---E;这样A只差和F对阵了,所以第四天A---F、D---E;所以第五天的对阵:A---B、C---D、E---F。
4(人大附中考题)
【解】:2003个人坐一起,每人都声明左右都是骗子,这样我们可以发现要么是骗子和骑士坐间隔的坐,要不就是两个骗子和一个骑士间隔着坐,因为三个以上的骗子肯定不能挨着坐,这样中间的骗子
就是说真话了。再来讨论第一种情况,显然骑士的人数要和骗子的人数一样多,而现在总共只有2003人,所以不符合情况,这样我们只剩下第二种情况。这样我们假设少个骗子,则其中旁边的那个骗子左右两边留下的骑士,这样说明骗子说“我左右的两个邻居都是与我不同类的人”是真话。所以只能是少个骑士。
5 (西城实验考题)
【解】: 总共有52×5=260道题,这样做对的有260-(4+6+10+20+39)=181道题。
对2道,3道,4道题的人共有
52-7-6=39(人).
他们共做对
181-1×7-5×6=144(道).
由于对2道和3道题的人数一样多,我们就可以把他们看作是对2.5道题的人((2+3)÷2=2.5).这样转化成鸡兔同笼问题:所以对4道题的有 (144-2.5×39)÷(4-1.5)=31(人).
答:做对4道题的有31人.
预测1
【答】姓刘的老年女老师,教数学。
提示:假设是男老师,由(2)(3)(5)知,他既不是青年、中年,也不是老年,矛盾,所以是女老师。再由(1)知,她不教语文,不是中年人。假设她教外语,由(3)(5)知她必是中年人,矛盾,所以她教数学。由(2)(4)知她是老年人,由(3)知她姓刘。
预测2
【答】B,E,D,C,A依次得98,97,96,95,94分。
解:由B,E所说,推知B第一、E第二;由C,D所说,推知C,D都不是最低,所以A最低;由A最低及C所说,推知C在A,D之间,即D第三、C第四。五个人得分从高到底的顺序是B,E,D,C,A。
因为C是A,D的平均分,A是94分,所以D的得分必是偶数,只能是96或98。如果D是98分,则C是(98+94)÷2=96(分), E是96+2=98(分),与D得分相同,与题意不符。因此D是96分,C得95分,E得97分, B得96×5-(94+95+96+97)=98(分)。B,E,D,C,A依次得98,97,96,95,94分。
预测3
【答】3分。
解:B队得分是奇数,并且恰有两场平局,所以B队是平2场胜1场,得5分。A队总分第一,并且没有胜B队,只能是胜2场平1场(与B队平),得7分。因此C队与B队平局,负于A队,得分是奇数,所以只能得1分。D队负于A队和B队,胜C队,得3分。
1(首师附中考题)
【解】单循环制说明每个人都要赛5盘,这样A 就跟所有人下过了,再看E,他只下过1盘,这意味着他只和A下过,再看B 下过4盘,可见他除了没跟E下过,跟其他人都下过;再看D 下过2,可见肯定是跟A,B下的,再看C,下过3盘,可见他不能跟E,D下,所以只能跟A,B,F下,所以F总共下了3盘。
2(三帆中学考题)
【解】甲得3分,而且只出现一盘平局,说明甲一胜一平;乙2分,说明乙一胜一负;丙1分,说明一平一负。这样我们发现甲平丙,甲胜乙,乙胜丙。
3(西城实验考题)
【解】 天数 对阵 剩余对阵
第一天 B---D A、C、E、F
第二天 C---E A、B、D、F
第三天 D---F A、B、C、E
第四天 B---C A、D、E、F
第五天 A---? ?
从中我们可以发现D已经和B、C对阵了,这样第二天剩下的对阵只能是A---D、B---F;又C已经和E、B对阵了,这样第三天剩下的对阵只能是C---A、B---E;这样B就已经和C、D、E、F都对阵了,只差第五天和A对阵了,所以第五天A---B;再看C已经和A、B、E对阵了,第一天剩下的对阵只能是C---F、A---E;这样A只差和F对阵了,所以第四天A---F、D---E;所以第五天的对阵:A---B、C---D、E---F。
4(人大附中考题)
【解】:2003个人坐一起,每人都声明左右都是骗子,这样我们可以发现要么是骗子和骑士坐间隔的坐,要不就是两个骗子和一个骑士间隔着坐,因为三个以上的骗子肯定不能挨着坐,这样中间的骗子
就是说真话了。再来讨论第一种情况,显然骑士的人数要和骗子的人数一样多,而现在总共只有2003人,所以不符合情况,这样我们只剩下第二种情况。这样我们假设少个骗子,则其中旁边的那个骗子左右两边留下的骑士,这样说明骗子说“我左右的两个邻居都是与我不同类的人”是真话。所以只能是少个骑士。
5 (西城实验考题)
【解】: 总共有52×5=260道题,这样做对的有260-(4+6+10+20+39)=181道题。
对2道,3道,4道题的人共有
52-7-6=39(人).
他们共做对
181-1×7-5×6=144(道).
由于对2道和3道题的人数一样多,我们就可以把他们看作是对2.5道题的人((2+3)÷2=2.5).这样转化成鸡兔同笼问题:所以对4道题的有 (144-2.5×39)÷(4-1.5)=31(人).
答:做对4道题的有31人.
预测1
【答】姓刘的老年女老师,教数学。
提示:假设是男老师,由(2)(3)(5)知,他既不是青年、中年,也不是老年,矛盾,所以是女老师。再由(1)知,她不教语文,不是中年人。假设她教外语,由(3)(5)知她必是中年人,矛盾,所以她教数学。由(2)(4)知她是老年人,由(3)知她姓刘。
预测2
【答】B,E,D,C,A依次得98,97,96,95,94分。
解:由B,E所说,推知B第一、E第二;由C,D所说,推知C,D都不是最低,所以A最低;由A最低及C所说,推知C在A,D之间,即D第三、C第四。五个人得分从高到底的顺序是B,E,D,C,A。
因为C是A,D的平均分,A是94分,所以D的得分必是偶数,只能是96或98。如果D是98分,则C是(98+94)÷2=96(分), E是96+2=98(分),与D得分相同,与题意不符。因此D是96分,C得95分,E得97分, B得96×5-(94+95+96+97)=98(分)。B,E,D,C,A依次得98,97,96,95,94分。
预测3
【答】3分。
解:B队得分是奇数,并且恰有两场平局,所以B队是平2场胜1场,得5分。A队总分第一,并且没有胜B队,只能是胜2场平1场(与B队平),得7分。因此C队与B队平局,负于A队,得分是奇数,所以只能得1分。D队负于A队和B队,胜C队,得3分。