第21届“迎春杯”数学科普活动初赛详解
北京市小学生第21届“迎春杯”数学科普活动日 数学解题能力展示初赛解答 |
第1题 计算: 的值为多少? |
第2题 污水处理厂有甲、乙两个水池,甲池原有水960立方米,乙池原有水90立方米。如果甲池的水以每小时60立方米的速度流入乙池,问:多少小时后,乙池中的水是甲池的4倍? |
第3题 将1、2、3、4、5、6、7、8、9分别填入图1中的9个圆圈内,使图中每条直线上所填数之和都等于K,问:K的值是多少?(图中有7条直线) |
第4题 实验小学六年级有学生152人。现在要选出男生人数的 和女生5人,到国际数学家大会与专家见面。学校按照上述要求选出若干名代表后,剩下的男、女生人数相等。问:实验小学六年级有男生多少人? |
第5题 小华有糖300克,他有一架天平及重量分别为30克和5克的砝码。问:小华最少用天平称几次,可以将糖分为两份,使一份重100克,另一份重200克? |
第6题 甲、乙两名计算机文字录入人员要共同录入一份15400字的文稿。当甲完成录入任务的 ,乙完成录入任务的80%时,两人尚未录入的字数相等。问:甲的录入任务是多少个字? |
第7题 如图2所示,三角形ABC被线段DE分成三角形BDE和四边形ACDE两部分,问:三角形BDE的面积是四边形ACDE面积的几分之几? |
第8题 图3是一个奥林匹克五环标识。这五个环相交成9部分A、B、C、D、E、F、G、H、I。请将数字1、2、3、4、5、6、7、8、9分别填入这9个部分中,使得五个环内的数字和恰好构成五个连续的自然数。问:这五个连续自然数的和的最大值是多少? |
第9题 有红、黄、蓝、绿四种颜色的卡片,每种颜色的卡片各有3张。相同颜色的卡片上写相同的自然数,不同颜色的卡片上写不同的自然数。老师把这12张卡片发给6名同学,每人得到两张颜色不同的卡片。然后老师让学生分别求出各自两张卡片上两个自然数的和。六名同学交上来的答案分别为:92、125、133、147、158、191。老师看完6名同学的答案后说,只有一名同学的答案错了。问:四种颜色卡片上所写各数中最小数是多少? |
第10题 甲、乙二人分别从A、B两地同时出发相向而行,5小时后相遇在C点。如果甲速度不变,乙每小时多行4千米,且甲、乙还从A、B两地同时出发相向而行,则相遇点D距C点10千米;如果乙速度不变,甲每小时多行3千米,且甲、乙还从A、B两地同时出发相向而行,则相遇点E距C点5千米。问:甲原来的速度是每小时多少千米?
|
第11题 在由25个边长为1的正方形组成的5×5的方格网中有3个方格内已经标有3个数3、4、5(如图4所示)。请你用一条封闭的折线沿水平或竖直方向把其余22个方格的中心连接起来,要求这条折线在标有数字的方格的所有邻格(邻格指至少有一个公共边界点的两个方格)内发生拐弯的次数恰好与该数相等。问:这条封闭的折线有多少个拐弯处?(示例图5中折线有10个拐弯处) |
第12题 一个六位数 ,如果满足 ,则称 为“迎春数”(如4×102564=410256,则102564就是“迎春数”)。请你求出所有“迎春数”的总和。 答案:999999 解:设x= ,则有4×(10x+f)=100000f+x,即x=2564 f 由于x为五位数,f为小于10的自然数,知f可取4、5、6、7、8、9 所有“迎春数”的总和为:2564×(4+5+6+7+8+9)×10+(4+5+6+7+8+9)=999999 |